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Abstract

Subspecies nomenclature systems of pathogens are increasingly based on sequence data. The use of phylogenetics to
identify and differentiate between clusters of genetically similar pathogens is particularly prevalent in virology from the
nomenclature of human papillomaviruses to highly pathogenic avian influenza (HPAI) H5Nx viruses. These nomencla-
ture systems rely on absolute genetic distance thresholds to define the maximum genetic divergence tolerated between
viruses designated as closely related. However, the phylogenetic clustering methods used in these nomenclature systems
are limited by the arbitrariness of setting intra and intercluster diversity thresholds. The lack of a consensus ground truth
to define well-delineated, meaningful phylogenetic subpopulations amplifies the difficulties in identifying an informative
distance threshold. Consequently, phylogenetic clustering often becomes an exploratory, ad hoc exercise. Phylogenetic
Clustering by Linear Integer Programming (PhyCLIP) was developed to provide a statistically principled phylogenetic
clustering framework that negates the need for an arbitrarily defined distance threshold. Using the pairwise patristic
distance distributions of an input phylogeny, PhyCLIP parameterizes the intra and intercluster divergence limits as
statistical bounds in an integer linear programming model which is subsequently optimized to cluster as many sequences
as possible. When applied to the hemagglutinin phylogeny of HPAI H5Nx viruses, PhyCLIP was not only able to reca-
pitulate the current WHO/OIE/FAO H5 nomenclature system but also further delineated informative higher resolution
clusters that capture geographically distinct subpopulations of viruses. PhyCLIP is pathogen-agnostic and can be gen-
eralized to a wide variety of research questions concerning the identification of biologically informative clusters in
pathogen phylogenies. PhyCLIP is freely available at http://github.com/alvinxhan/PhyCLIP, last accessed March 15, 2019.
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Introduction
Advances in high-throughput sequencing technology and
computational approaches in molecular epidemiology have
seen sequence data increasingly integrated into clinical care,
surveillance systems, and epidemiological studies (Gardy and
Loman 2017). Based on the growing number of available
pathogen sequences genomic epidemiology has yielded a
wealth of information on epidemiological and evolutionary
questions ranging from transmission dynamics to genotype–
phenotype correlations. Central to all of these questions is the
need for robust and consistent nomenclature systems to de-
scribe and partition the genetic diversity of pathogens to
meaningfully relate to epidemiological, evolutionary, or eco-
logical processes. Increasingly, nomenclature systems for
pathogens below the species level are based on sequence
information, supplementing, or even displacing conventional

biological properties such as serology or host range
(Simmonds et al. 2010; McIntyre et al. 2013). However, exist-
ing sequence-based nomenclature frameworks for defining
lineages, clades or clusters in pathogen phylogenies are mostly
based on arbitrary and inconsistent criteria.

Standardizing the definition of a phylogenetic cluster or
lineage across pathogens is complicated by differences in
characteristics such as genome organization and mainte-
nance ecology. Cluster definitions vary widely even between
studies of the same pathogen, limiting generalization, and
interpretation between studies as designated clusters, clades,
and/or lineages carry inconsistent information in the larger
evolutionary context (Grabowski et al. 1904; Dennis et al.
2014; Hassan et al. 2017).

In virology, nomenclature systems are largely reliant on
absolute distance thresholds that define the maximum
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genetic divergence tolerated between viruses designated as
closely related (Burk et al. 2011; Van Doorslaer et al. 2011;
Lauber and Gorbalenya 2012; Donald et al. 2013; Kroneman
et al. 2013; Poon et al. 2015, 2016; Smith et al. 2015; Valastro
et al. 2016). Groups of closely related viruses are inferred to be
phylogenetic clusters when the genetic distance between
them is lower than the limit set on within-cluster divergence.
Nonparametric distance-based clustering approaches have
defined the distance between sequences using pairwise ge-
netic distances calculated directly from sequence data
(WHO/OIE/FAO H5N1 Evolution Working Group 2008;
Aldous et al. 2012; Ragonnet-Cronin et al. 2013) or pairwise
patristic distances calculated from inferred phylogenetic trees
(Hu�e et al. 2004; Prosperi et al. 2011; Poon et al. 2015; Pu et al.
2015; Ortiz and Neuzil 2017). Within-cluster limits on toler-
ated divergence have been set using mean (WHO/OIE/FAO
H5N1 Evolution Working Group 2008), median (Prosperi
et al. 2011), or maximum within-cluster pairwise genetic or
patristic distance (Ragonnet-Cronin et al. 2013). Some meth-
ods incorporate additional criteria, such as the statistical sup-
port for subtrees under consideration or minimum/
maximum cluster size (Hu�e et al. 2004; Prosperi et al. 2010,
2011; Ragonnet-Cronin et al. 2013). These genetic distance-
based clustering approaches are convenient, as they are rule-
based and scalable, allowing for relatively easy nomenclature
updates. Arguably, flexibility in the distance thresholds allows
researchers to curate clusters based on consistency of the
geographic or temporal metadata.

The central limitation of approaches based on pairwise
genetic or patristic distance is that thresholds to define mean-
ingful within- and between-cluster diversity are arbitrary. For
most pathogens, there is no clear definition of a well-
delineated phylogenetic unit to underlie nomenclature des-
ignation or suggest what additional information would be
informative to delineate subpopulations, for example, infor-
mation on antigenicity or geography or host range.
Resultantly, there is no ground truth to optimize distance
thresholds when developing a nomenclature system for
most pathogens. Partitioning phylogenetic trees into mean-
ingful subsets is therefore complex and is mostly performed
ad hoc through exploratory analyses with uninformative sen-
sitivity analyses across thresholds. As expected, cluster mem-
bership is highly sensitive to the threshold applied and
therefore results can be unstable across different cluster def-
initions (Rose et al. 2017).

There is a need for a consistent, automated and robust
statistical framework for determining cluster-defining criteria
in nomenclature frameworks. Here, we describe a statistically
principled phylogenetic clustering approach called
Phylogenetic Clustering by Linear Integer Programming
(PhyCLIP). PhyCLIP is based on integer linear programming
(ILP) optimization, with the objective to assign statistically
principled cluster membership to as many sequences as pos-
sible. We apply PhyCLIP to the hemagglutinin (HA) phylog-
eny of the highly pathogenic avian influenza (HPAI) A/goose/
Guangdong/1/1996 (Gs/GD)-like lineage of the H5Nx sub-
type viruses, which underlies the most prominent nomencla-
ture system for avian influenza viruses and which itself is

based on a genetic distance approach (WHO/OIE/FAO
H5N1 Evolution Working Group 2008).

PhyCLIP is freely available on github (http://github.com/
alvinxhan/PhyCLIP, last accessed March 15, 2019) and docu-
mentation can be found on the associated wiki page (http://
github.com/alvinxhan/PhyCLIP/wiki, last accessed March 15,
2019).

New Approach
PhyCLIP requires an input phylogeny and three user-provided
parameters:

i. Minimum number of sequences (S) that should be con-
sidered a cluster.

ii. Multiple of deviations ðcÞ from the grand median of the
mean pairwise sequence patristic distance that defines
the within-cluster divergence limit (WCL)

iii. False discovery rate (FDR) to infer that the diversity
observed for every combinatorial pair of output clusters
is significantly distinct from one another.

Figure 1A shows the workflow of PhyCLIP which is further
elaborated here. First, PhyCLIP considers the input phyloge-
netic tree as an ensemble of N monophyletic subtrees (includ-
ing the root) that could potentially be clustered as a single
phylogenetic cluster, each defined by an internal node i sub-
tending a set of sequences Li (fig. 1B, see “Materials and
Methods” section). Consequently, as the topological structure
of the phylogenetic tree is incorporated in the cluster struc-
ture, it is possible to infer the evolutionary trajectory of the
output clusters of PhyCLIP if the tree is appropriately rooted.
For clarity, we use the term subtree to refer to the set of
sequences subtended under the same node that could po-
tentially be clustered and the term cluster to refer to sequen-
ces that are clustered by PhyCLIP within the same subtree.

The within-cluster internal diversity of subtree i is mea-
sured by its mean pairwise sequence patristic distance (li).
PhyCLIP calculates the WCL, an upper bound to the internal
diversity of a cluster, as:

WCL ¼ �l þ crð Þ; (1)

where �l is the grand median of the mean pairwise patristic
distance distribution l1; l2; . . . ; li; . . . ;lNf and r is any
robust estimator of scale (e.g., median absolute deviation
MADð Þ or Qn, see “Materials and Methods” section) that

quantifies the statistical dispersion of the mean pairwise pa-
tristic distance distribution for the ensemble of N subtrees. In
other words, only subtrees with li � WCL will be consid-
ered for clustering by PhyCLIP (fig. 1B).

Distal Dissociation
The assumption that a cluster must be monophyletic can
lead to incorrect assignment of cluster membership to under-
sampled, distantly related outlying sequences that have di-
verged considerably from the rest of the cluster (e.g., sequence
j9 in fig. 1C). These exceedingly distant outlying sequences can
also inflate li of the subtree they subtend, leading to inaccu-
rate overestimation of the internal divergence of the putative
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subtree. Similarly, distantly related descendant subtrees can
artificially inflate li of their ancestral trunk nodes (e.g., nodes
o and q in fig. 1C). In turn, historical sequences immediately
descending from a trunk node i will not be clustered if its li
exceeds WCL (fig. 1C).

PhyCLIP dissociates any distal subtrees and/or outlying
sequences from their ancestral lineage prior to implementing
the ILP model. For any subtree i with li > WCL, starting from
the most distant sequence to i, PhyCLIP applies a leave-one-
out strategy dissociating sequences, and the whole descen-
dant subtree if every sequence subtended by it was dissoci-
ated, until the recalculated li without the distantly related
sequences falls below WCL. For each subtree, PhyCLIP also
tests and dissociates any outlying sequences present. An out-
lying sequence is defined as any sequence whose patristic
distance to the node in question is > 3� the estimator of
scale away from the median sequence patristic distance to
the node. li is recalculated for any node with changes to its
sequence membership Li after dissociating these distantly
related sequences. These distal dissociation steps effectively
offer PhyCLIP greater flexibility in its clustering construct
allowing the identification of paraphyletic clusters on top of

monophyletic ones that may better reflect the phylogenetic
relationships of these sequences.

Integer Linear Programming Optimization
The full formulation of the ILP model is detailed in “Materials
and Methods” section. Here, we broadly describe how the
optimization algorithm proceeds to delineate the input phy-
logeny. The primary objective of PhyCLIP is to cluster as many
sequences in the phylogeny as possible subject to the follow-
ing constraints:

i. All output clusters must contain �S number of
sequences.

ii. All output clusters must satisfy li � WCL.
iii. The pairwise sequence patristic distance distribution of

every combinatorial pair of output clusters must be
significantly distinct from the resultant cluster if sequen-
ces from the pair of clusters were to combine. This is the
intercluster divergence constraint and herein, statistical
significance is inferred if the multiple-testing corrected P
value for the cluster pair is <FDR (see “Materials and
Methods” section).

FIG. 1. Schematics of PhyCLIP workflow and inference. (A) Workflow of PhyCLIP. Apart from an appropriately rooted phylogenetic tree, users only
need to provide S, c; and FDR as the inputs for PhyCLIP. After determining the within-cluster WCL, PhyCLIP dissociates distantly related subtrees
and outlying sequences that inflate the mean patristic distance (li) of ancestral subtrees. The ILP model is then implemented and optimized to
assign cluster membership to as many sequences as possible. If a prior of cluster membership is given, this is followed by a secondary optimization
to retain as much of the prior membership as is statistically supportable within the limits of PhyCLIP. Post-ILP optimization clean-up steps are
taken before yielding finalized clustering output. (B) PhyCLIP considers the phylogeny as an ensemble of monophyletic subtrees, each defined by
an internal node (circled numbers) subtended by a set of sequences (letters encapsulated within shaded region of the same color as the circled
number). In this example, only subtrees with� 3 sequences (S ¼ 3) are considered for clustering by the ILP model but WCL is determined from li
of all subtrees, including the unshaded subtrees 6–8. Only subtrees where li � WCL are eligible for clustering. (C) Subtrees o and q, as well as
sequence j9 are dissociated from subtree i as they are exceedingly distant from i. If sequences j1, j2, j4 and j5 are clustered under subtreehwhereas j3
is clustered under subtree i by ILP optimization, a post-ILP clean up step will remove j3 from cluster i.
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iv. If a descendant subtree satisfies (i)–(iii) for clustering
(e.g., subtree 5 in fig. 1B) and so does its ancestor, which
also subtends the sequences descending from the de-
scendant, (e.g., subtree 3 in fig. 1B), the leaves subtended
by the descendant will be clustered under the descen-
dant node (e.g., sequences E–G will be clustered under
cluster 5 in fig. 1B) whereas the direct progeny of the
ancestor subtree will cluster amongst themselves (e.g.,
sequences H and I will be clustered under cluster 3 in
fig. 1B).

The ILP model is implemented in a third-party linear pro-
gramming solver fully integrated within PhyCLIP, to obtain
the global optimal solution. At the time of this publication,
PhyCLIP supports two-third-party solvers:

(1) Gurobi (http://www.gurobi.com/, last accessed March
15, 2019) is one of the fastest available commercial
mathematical programming solvers. Full-featured aca-
demic licenses of Gurobi are available for free to users
based at any academic institution.

(2) GNU Linear Programming Kit (GLPK, http://www.gnu.
org/software/glpk, last accessed March 15, 2019) is a
popular, free, and open-source linear programming
solver.

Based on a recent independent benchmark (http://plato.
asu.edu/talks/informs2018.pdf; last accessed March 15, 2019),
Gurobi outperformed GLPK in both performance and speed
(Gurobi solved all 40 Simplex LP test problems whereas GLPK
could only solve 31 of them with a geometric mean runtime
that was 52 times longer than Gurobi). As such, it is highly
recommended that any users with Internet access via an ac-
ademic domain run PhyCLIP with the Gurobi solver. All clus-
tering results presented in this manuscript were obtained
using Gurobi.

Post-ILP Clean-Up
Although distal dissociation prior to ILP optimization works
well for dissociating distantly related subtrees and sequences,
it is ineffective in identifying spurious singletons such as se-
quence j3 in figure 1C. Here, in terms of sequence patristic
distance, sequence j3 is an outlying sequence to the descen-
dant node h but not so to the ancestral node i. If taxa sub-
tended by subtree h (i.e., j1, j2, j4, and j5) were to be clustered
without j3 which itself is clustered under cluster i, PhyCLIP
performs a post-ILP optimization clean-up step that removes
j3 from output cluster i. This is because j3 is clearly a topo-
logically outlying taxon to i and if unremoved, would imply
that sequences clustered under cluster h (i.e., j1, j2, j4, and j5)
can belong to cluster i as well.

PhyCLIP also offers the user an optional clean-up step that
subsumes subclusters into their parent clusters if sequences in
the descendant subcluster are still associated with the parent
cluster (i.e., not removed by distal dissociation) and that co-
alescing with the parent clusters does not lead to violation of
the statistical bounds that define the clustering result. This
may be useful if the user prefers a relatively more coarse-
grained clustering (e.g., nomenclature building). As

mentioned earlier, so long as a statistically significant distinc-
tion could be made between a descendant subtree and its
ancestral lineage, the ILP model enforces the progeny sequen-
ces of the descendant subtree to cluster in the descendant
cluster. In turn, PhyCLIP is sensitive to the detection of clus-
ters of highly related or identical sequences that minimally
satisfies the minimum cluster size (S), as their distributions are
statistically distinct from the rest of the population. This sen-
sitivity may lead to over-delineation of the tree and/or mul-
tiple nested clusters. Notably, these sensitivity-induced
subclusters are not false-positive clusters and meet the
same statistical criteria as all other clusters. However, some
users may want to subsume these subclusters into parent
clusters to facilitate higher level interpretation.

Optimization Criteria
PhyCLIP’s user-defined parameters can be calibrated across a
range of input values, optimizing the global statistical prop-
erties of the clustering results to select an optimal parameter
set. The optimization criteria are prioritized by the research
question, as the clustering resolution and cluster definition
are dependent on the question, and therefore the degree of
information required to capture ecological, epidemiological,
and/or evolutionary processes of interest. Users may want a
high-resolution clustering result, with the phylogenetic tree
delineated into a large number of small, high confidence
clusters with very low internal divergence, tolerating a higher
number of unclustered sequences. Other users may want a
more intermediate resolution, with more broadly defined
clusters that are still well-separated but encompass the ma-
jority of data in the tree (supplementary fig. S1A,
Supplementary Material online).

PhyCLIP’s optimization criteria are agnostic to the meta-
data of the data set and include: 1) The grand mean of the
pairwise patristic distance distribution and its standard devi-
ation (SD). The grand mean is a measure of the within-cluster
divergence and can be optimized to select a clustering con-
figuration with the lowest global internal divergence. 2) The
mean of the intercluster distance to all other clusters and its
SD. This can be optimized to select a clustering configuration
with well-separated clusters. 3) The percentage of sequences
clustered, which can be optimized to minimize the number of
unclustered sequences. 4) The total number of clusters and 5)
mean or median cluster size, which can be optimized to select
a tolerable level of stratification of the tree.

The ranges of input parameters considered are also depen-
dent on the characteristics of the data set. The minimum
cluster size range considered should be a factor of the size
of the phylogenetic tree, whereas the multiple of deviation (c)
considered should be a factor of the intra and intercluster
distance related to the research question.

Metadata can be incorporated to validate PhyCLIP’s opti-
mization. The spatiotemporal structure of phylogenies can
inform clustering results if within-cluster variation in meta-
data such as collection times or geographic origin is used as a
post hoc optimization criterion. Within-cluster pairwise geo-
graphic distance between the origins of sequences can act as
an incomplete ground truth to determine whether a
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clustering result delineates meaningful clusters if there is a
reasonable expectation that clusters are defined by spatial
factors. The within-cluster deviation in collection dates can
also be included as an optimization criterion if clusters are
expected to be temporally structured.

Results
To evaluate the utility of PhyCLIP we compared its clustering
of the global HPAI H5Nx virus data against the WHO/OIE/
FAO nomenclature (WHO/OIE/FAO HN Evolution Working
Gr 2009; Smith et al. 2015). The WHO/OIE/FAO H5 nomen-
clature has been updated progressively since its development
in 2007 as new sequences are added to the global phylogeny
including updates in 2009 and 2015. The primary analysis of
PhyCLIP’s performance was assessed with the full data set of
H5N1 HA sequences included in the WHO/OIE/FAO H5 no-
menclature update of 2015 (n ¼ 4,357), with comparison
with the WHO/OIE/FAO clade designation. PhyCLIP was
run with different combinations of the parameters varied
over the following ranges: a minimum cluster size of 2–10,
a multiple of deviation (c) of 1–3, and an FDR of 0.05, 0.1, 0.15,
or 0.2. The optimization criteria were prioritized as follows: 1)
percentage of sequences clustered, 2) grand mean of within-
cluster patristic distance distribution, 3) mean within-cluster
geographic distance, and 4) mean of the intercluster
distances.

The percentage of sequences clustered was prioritized as
the primary optimization criterion to ensure that the maxi-
mum number of sequences was assigned a nomenclature
identifier. Mean within-cluster geographic distance was in-
cluded as a post hoc optimization criterion as many avian
influenza viruses cluster with high spatial consistency owing
to their transmission dynamics in localized avian populations.
For influenza viruses endemic to poultry such as H5Nx, this is
likely owing to increased local transmission during outbreaks
in large poultry populations, as well as the associated sam-
pling biases (Smith et al. 2015). Within-cluster genetic diver-
gence was optimized with higher priority than within-cluster
mean geographic distance, as the use of phylogenetic geo-
graphic structure as a ground truth for avian influenza viruses
is restricted by the long-distance dissemination of related
viruses through mechanisms such as the poultry trade or
migration of wild birds (WHO/OIE/FAO H5N1 Evolution
Working Group 2014; Smith et al. 2015). The within-cluster
geographic distance was calculated for each cluster in each
clustering result as the mean within-cluster pairwise Vicenty
distance in miles.

The temporal consistency of clusters can also be used as
optimization criteria for measurably evolving viruses such as
Influenza A virus (Drummond et al. 2003). Results ranking the
grand mean within-cluster SD in sampling dates of each clus-
tering result as the fourth optimization criterium, with mean
of the intercluster distance in fifth, were identical to those
only including the aforementioned four optimization criteria.

As PhyCLIP incorporates topological information of the
phylogeny into the clustering construct, nonterminal internal
nodes with zero branch lengths can lead to erroneous

clustering and over-delineation (supplementary fig. S1B,
Supplementary Material online). Such internal nodes are usu-
ally found in bifurcating trees as representations of polyto-
mies, arising from a lack of phylogenetic signal among the
sequences subtended by the node to resolve them into di-
chotomies. As such, prior to implementing PhyCLIP, all non-
terminal, zero branch length nodes in the input phylogenetic
trees were collapsed into polytomies, which more accurately
depicts the relationship between identical/indiscernible
sequences and/or ancestral states. In the H5Nx analysis, all
subclusters were subsumed if the statistical requisites of the
parent clade were maintained, to aid in easing the interpre-
tation of the nomenclature designation (as discussed in the
“New Approach” section).

Influence of the Parameters
The influence of the parameters on PhyCLIP’s clustering prop-
erties was assessed with the 2015-update H5 phylogeny.
Lower multiples of deviation (c) define a more conservative
expected range for tolerated within-cluster divergence, in-
formed by the global pairwise patristic distance distribution
(supplementary fig. S2, Supplementary Material online). As a
result, clusters designated at a c of 1 have the lowest internal
divergence, measured by the grand mean of the pairwise pa-
tristic distance distribution (fig. 2C). These clusters are
expected to be highly related, with low variation in clustered
sequence spatiotemporal metadata (fig. 2E and F). More con-
servative ranges of tolerated within-cluster divergence result
in a higher clustering resolution with a greater number of
clusters, lower mean cluster sizes and a higher percentage
of sequences unclustered (fig. 2A and B). A higher c increases
the limit of tolerated within-cluster divergence, resulting in a
lower clustering resolution that coalesces smaller clusters into
larger, more internally divergent clusters. The collapsing of the
smaller clusters decreases the total number of clusters while
concurrently increasing the percentage of sequences clus-
tered and mean cluster size. The influence of c is less pro-
nounced for the mean intercluster distance, with no apparent
distinction between c ¼ 1 and 2. The total number of clus-
ters decreases approximately linearly as the minimum cluster
size ðSÞ increases from two to ten (fig. 2A). Lower FDRs are
more conservative in designating the pairwise patristic
distance distributions of two clusters as statistically dis-
tinct. A higher or less conservative FDR therefore desig-
nates more similar distributions as distinct from one
another, increasing the number of clusters (fig. 2A). The
effect of FDR is muted at a higher minimum cluster size or
higher c, as these parameters designate larger clusters,
which limits the number of clustering configurations
available.

Optimal PhyCLIP Clustering Result for HPAI Avian H5
Viruses
For the full phylogeny of Gs/GD-like H5 viruses from the 2015
nomenclature update, the optimal parameter set combined a
minimum cluster size of 7, an FDR of 0.15, and a c of 3. The
optimal clustering configuration clustered 98% of the sequen-
ces into a total of 89 clusters with a median cluster size of 21
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sequences. The topology of the optimal clustering result
yields informative source–sink trajectories that are supported
by previously reported phylogenetic and phylogeographic ev-
idence of the global panzootic of the Gs/GD-like H5N1 line-
age (Duan et al. 2008; Wang et al. 2008; Smith et al. 2015; The

Global Consortium for H5N8 and Related Influenza Viruses
2016).

Principally, pathogen nomenclature systems should delin-
eate population structure, highlighting the underlying popu-
lation dynamics that may be informative about the

FIG. 2. Influence of parameters on the clustering properties of PhyCLIP in the WHO/OIE/FAO 2015-update phylogeny. Figure A–F has the
parameter set combinations ordered according to minimum cluster size, FDR and c on the x-axis. The banded background and x-axis subscript
numbering indicate the minimum cluster size of the parameter set. Marker color and size is indicative of the c and the FDR respectively of the
parameter set as indicated by the legend in figure B. (A) Total number of clusters. (B) Percentage of sequences clustered. (C) Grand mean of the
pairwise patristic distance distribution. (D) Mean of the intercluster distance to all other clusters. (E) Mean within-cluster geographic distance
calculated in Vicenty miles. (F) Mean within-cluster SD in collection dates.
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evolutionary trajectory of pathogen variants. The distal disso-
ciation approach of PhyCLIP produces a clustering topology
where divergent subclusters nest within a larger cluster struc-
ture termed a supercluster, as exemplified with WHO/OIE/
FAO clade 2.1x viruses in figure 3. Sufficiently diverse subclus-
ters are dissociated from the ancestral trunk node of a puta-
tive cluster. This enables the remaining sequences that meet
the statistical criteria to cluster with the ancestral node based
on their pairwise patristic distance, as the divergent subcluster
is no longer inflating the ancestral node’s mean pairwise
patristic distance above the within-cluster limit. Cluster A
in figure 3 depicts the supercluster topology: the source
population viruses (tips in yellow) are annotated as A, and
the divergent descendant subclusters are annotated as A.1,
A.2, and A.3, respectively. This approach captures source–
sink ecological dynamics: the supercluster acts as a puta-
tive source population to its subclusters, reflecting the
clear evolutionary divergence and trajectory of descend-
ants of the source population (sub-lineages). The nomen-
clature system algorithmically imposed on PhyCLIP’s
clustering for avian influenza is designed to enhance the
evolutionary information in the clustering (see “Materials
and Methods” section).

PhyCLIP’s optimal cluster designation delineated the spa-
tiotemporal structure of the phylogeny at high resolution
(supplementary fig. S3, Supplementary Material online).
Viruses circulating in south central and northeast China
and Hong Kong in 1996–2003 acted as the source population
for the emergence of the classical viruses, seeding four lineages
(cluster 1, seeding clusters 1.1–1.4, supplementary table S1,
Supplementary Material online). The second supercluster
captures the first major wave of expansion into neighboring
countries in east and southeast Asia in the early 2000s, with a
source population of viruses circulating in south central, east,
and north China, Vietnam, and Hong Kong in 2000–2003 (1.4
and 1.4.1 and their descendant lineages). The third superclu-
ster captures the second major wave of expansion of the Gs/
GD-like H5 viruses, characterized by global spread (cluster
1.4.1.5 and its descendants). The source population of viruses
from east, south central, and southwest China, Hong Kong,
and Vietnam circulated from 2002 to 2005, giving rise to
diverse and distinct viral lineages in different regions globally
(1.4.1.5.1–6). The supercluster topology highlights single line-
age introductions for countries with endemic circulation such
as Indonesia and Egypt, but delineates multiple co-circulating
lineages structured overtime. The clustering topology also
highlights multiple incursions of diverse viruses into countries
such as South Korea and Japan (supplementary table S3,
Supplementary Material online).

In addition to source–sink dynamics, distal dissociation
also identifies probable outlying sequences, defined as
sequences more than three times the estimator of scale
away from the median patristic distance to the node. For
example, PhyCLIP identifies seven outliers in its delineation
of WHO/OIE/FAO clade 2.3.2.1c in the 2015 phylogeny (in-
dicated by red tip-points in fig. 4). These sequences may
represent under-sampled populations with unobserved diver-
sity, introductions from otherwise unsampled populations or

lower quality sequences introducing error into phylogenetic
reconstruction.

Comparison with the WHO/OIE/FAO H5
Nomenclature
The current WHO/OIE/FAO nomenclature system designa-
tes 43 different clades and 7 clade-like groupings for the
full H5 phylogeny as of the 2015 update (Smith et al. 2015)
(supplementary table S2, Supplementary Material online).
PhyCLIP recovers the current WHO/OIE/FAO H5 nomen-
clature with varying degrees of agreement across param-
eter sets, as measured by the variation of information (VI)
between the clustering partitions (supplementary fig. S4,
Supplementary Material online). VI is an information the-
oretic criterion for comparing partitions of the same data
set, based on the information lost and gained when mov-
ing between partitions (Meil�a 2007). A lower VI indicates
more similar partitions. Parameter sets with a c of 3 con-
sistently had the lowest VI compared with the WHO/OIE/
FAO system, indicating that the WHO/OIE/FAO nomen-
clature system has the highest agreement with PhyCLIP
clustering results that tolerate higher within-cluster
divergence.

In the optimal clustering result, PhyCLIP delineates the
spatiotemporal structure of the phylogeny with a higher res-
olution than the WHO/OIE/FAO nomenclature system (89
vs. 50 phylogenetic units, fig. S3, Supplementary Material on-
line). The supercluster structure of the PhyCLIP clustering
topology recapitulates the hierarchical structure of the
WHO/OIE/FAO nomenclature (fig. 3). Simultaneously,
PhyCLIP’s clustering captures clear lineage distinctions for vi-
ruses from different geographic regions and years in several
WHO/OIE/FAO demarcated clades. For example, PhyCLIP
delineates clade 2.3.2.1a into two separate clusters: 1) a cluster
that circulated in Vietnam in 2011–2012, with sporadic de-
tection in south central China and 2) a cluster that circulated
largely in Bangladesh, India, Bhutan, and Nepal from 2010 to
2014, with single viruses detected in south east China,
Vietnam, and Myanmar (fig. 4A). PhyCLIP also delineates
clade 2.3.2.1c into two clusters: 1) a cluster that captures
the expansion of viruses from north west and east China
into Mongolia, Russia, Nepal, Japan, and Korea for the period
2009–2011, and 2) a cluster that predominantly circulates in
China, Vietnam, and Indonesia for 2009–2012, with single
viruses from Lao PDR, Bangladesh, and Taiwan (fig. 4B).

Impact of Sampling
PhyCLIP’s clustering results are sensitive to the diversity in the
input population that informs the global distribution and
resultantly sampling. The influence of sampling was assessed
by comparing the optimal clustering result of the phylogeny
underlying the WHO/OIE/FAO H5 2015 nomenclature (n ¼
4,357) to the phylogeny underlying the 2009 nomenclature
update (n¼ 1,224), a subset nested in the 2015-update phy-
logeny. The WHO/OIE/FAO 2009 nomenclature update was
performed after the geographic expansion and divergence of
clade 2.2, which necessitated further delineation into clade
2.2.1. It designated 20 clades, including 8 third-order clades
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(WHO/OIE/FAO HN Evolution Working Group 2009). The
WHO/OIE/FAO 2015 nomenclature update includes approx-
imate 3.5-times the number of sequences as the 2009 nomen-
clature update, and includes novel clade designation to the

fourth- and fifth-order (WHO/OIE/FAO H5 Evolution
Working Group 2015). The optimal PhyCLIP parameter set
for the 2009 WHO/OIE/FAO nomenclature system combines
a minimum cluster size of 3, a FDR of 0.2 and a c of 3. In the

FIG. 3. Phylogeny of the Clade 2.1x viruses circulating in Indonesia. The WHO/OIE/FAO H5 nomenclature is annotated in black. PhyCLIP’s cluster
designation is indicated in blue, corresponding to tip color. PhyCLIP’s supercluster topology is exemplified by Cluster A. The source population of
the supercluster is annotated as A in pink, with tips colored yellow. The divergent descendant clusters are annotated as A.1, A.2, and A.3
respectively here. The letter A here is shorthand for its nomenclature address, 1.4.1.5.5.4.2. This nomenclature address indicates that supercluster
A is the second descendant of cluster 1.4.1.5.5.4 (indicated in light purple), which in turn is the forth descendant of the source supercluster 1.4.1.5.5,
indicated in red. See “Materials and Methods” section for full explanation of nomenclature addresses.
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2009 tree, this clustered 98% of the n¼ 1,224 viruses into 39
clusters, with a median cluster size of 12 (supplementary fig.
S5, Supplementary Material online).

Overall, the source–sink inference of PhyCLIP’s clustering
topology is largely consistent between the WHO/OIE/FAO
2009 and 2015 update phylogeny optimal clustering results
(supplementary table S1, Supplementary Material online).
The optimal result for the 2009 update phylogeny captures
a similar topology and source population for the South East
Asian (clusters 1.3.1 and 1.3.1.1) and the post-2005 global
wave of expansion (cluster 1.3.1.1.2.2.2) compared to the

optimal 2015 clustering, with substantial overlap between
the source populations identified (100% and 83% for source
populations for southeast Asia wave and global wave,
respectively).

Changes in the clustering topology between the 2009 and
2015 update phylogenies are expected as the underlying data
sets are substantially different. More than 3,000 viruses were
added to the tree in the 6 years between nomenclature
updates. The Gs/GD-like H5 viruses evolved significantly in
the intervening period owing to genetic drift and reassort-
ment. The addition of a large number of divergent viruses to

FIG. 4. PhyCLIP’s delineation of WHO/OIE/FAO demarcated clades 2.3.2.1a (A) and 2.3.2.1c (B). Tips are colored according to PhyCLIP’s cluster
designation. The tips colored in red in B are viruses that were designated as outliers by PhyCLIP’s outlier detection. Countries represented by single
viruses in the cluster are indicated with an asterisk.
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the underlying data set fundamentally alters the ensemble sta-
tistical properties of the tree, driving changes in the clustering
configuration by changes in the global patristic distance distri-
bution, topology, and statistical power between data sets. As a
result, the ecological inferences drawn from the 2015 clustering
topology are different from that of the 2009 phylogeny (sup-
plementary table S1, Supplementary Material online).

Primarily, the addition of a set of highly divergent sequen-
ces increases the spread of the global pairwise patristic dis-
tance distribution (supplementary fig. S2, Supplementary
Material online). The within-cluster limit it informs increases
concurrently, increasing the tolerance of allowable within-
cluster divergence. In the distal dissociation approach, in-
creased tolerance of divergence would allow for the incorpo-
ration of more distant trunk viruses into supercluster source
populations if the enclosed viruses are sufficiently distinct to
be dissociated as independent clusters (supplementary fig. S6,
Supplementary Material online). If the within-cluster limit is
lowered, inclusion of the considered trunk viruses will violate
the within-cluster limit. Resultantly, these trunk viruses and
their descendants will be assessed for clustering as indepen-
dent subtrees.

Clustering changes between 2009 and 2015 update phy-
logenies are also induced by the local effects of the addition of
multiple lineages to the 2015 phylogeny within clusters de-
fined in 2009 owing to their continued circulation and diver-
sification post-2009. Notably, many distinct clusters in the
2009 phylogeny are structured as source populations in
superclusters in the 2015 phylogeny (supplementary fig. S7,
Supplementary Material online). Here, PhyCLIP identifies that
the statistical properties of these divergent post-2009 lineages
are distinct enough to reliably dissociate them from the an-
cestral node and delineate them as separate clusters. The
viruses present in the 2009 phylogeny that these divergent
lineages descend from meet the within-cluster limit after the
dissociation and are structured as the source population to
the post-2009 nested diversity.

Topological differences between phylogenetic trees built
from different underlying data sets can also drive changes in
PhyCLIP’s clustering, as observed for the classical clade 0 vi-
ruses (supplementary fig. S6, Supplementary Material online).
The source population of the classical clade viruses for both
the 2009 and 2015 updates optimal clustering result is esti-
mated to have originated from south central and east China
and Hong Kong in 1997–2003. However, the 2015 cluster
designation resolves an additional seed lineage within the
2009-source population (supplementary fig. S6,
Supplementary Material online). In the 2009 phylogeny, this
additional cluster forms part of the source population as it is
part of the trunk of the tree. The equivalent cluster does not
form part of the trunk of the tree in the 2015 phylogeny and is
dissociated as a statistically distinct cluster. Moreover, the
substantial increase in the number of viruses between the
2009 and 2015 data sets along with the increase in diversity
results in more statistical power to delineate among groups of
viruses resulting in a higher clustering resolution for the 2015
phylogeny.

Comparison of Optimal to Suboptimal
Clustering Results
So far, we have focused our interpretation on the optimal
PhyCLIP clustering. To ensure that our results were robust
across similarly optimal PhyCLIP parameter sets we compared
the optimal set against the next four similarly optimal sets.
Comparing the top five clustering results ranked by the op-
timality criterion (in order of greatest number of sequences
clustered, lowest internal genetic and geographic divergence,
and greatest average between-cluster distance), the clustering
result from the optimal parameters set of the 2015 phylogeny
was generally consistent with those generated from the four
highest-ranked suboptimal parameter sets (see supplemen-
tary fig. S8, Supplementary Material online). Each of the top
four suboptimal clustering was found to have low VI (0.817–
0.984) relative to the optimal clustering, with a large propor-
tion (74.4–82.7%) of viruses clustered in the same corre-
sponding clusters. The supercluster source populations
leading to the early 2000 expansion into east and southeast
Asia as well as the global expansion in 2005 were similarly
found in all suboptimal results.

However, changes to parameter sets fundamentally
changed the statistical constraints defining the clustering so-
lution space and in turn, altered the partitions between re-
sultant clusters. Specifically, in this case, where c ¼ 3 in all five
optimal/suboptimal parameter sets, varying minimum cluster
size not only changed the distribution of putative subtrees for
clustering but the distribution of intercluster divergence P
values for multiple-testing correction as well. As such, while
the global superclusters were largely recapitulated in the sub-
optimal results, local partitions of co-circulating viruses
descending from these supercluster sources, and conse-
quently the inferences of source–sink dynamics, varied
amongst the different parameter sets.

PhyCLIP Clustering of the 1996–2018 H5Nx Phylogeny
In recent years the Gs/GD-lineage of H5 viruses has undergone
substantial evolution, with viruses from WHO/OIE/FAO clade
2.3.4.4 reassorting with co-circulating viruses to give rise to
multiple H5Nx subtypes including H5N2, H5N5, H5N6, and
H5N8. We applied PhyCLIP to a phylogeny representing the
Gs/GD-lineage up to and including early 2018 to investigate
how the global expansion of the H5Nx viruses changes clus-
tering inference (n ¼ 7,898) (supplementary figs. S9 and S10,
Supplementary Material online). Applying the same optimi-
zation approach described above, the optimal parameter set
for the 2018 phylogeny combines a minimum cluster size of 4,
a FDR of 0.2, and a c of 3. This parameter set clustered 97% of
the viruses into 135 clusters, with a median cluster size of 23
(supplementary fig. S11, Supplementary Material online).

The addition of the H5Nx viruses collected from 2014 to
2018 to the 2015 phylogeny changed the distribution in two
ways: 1) it added diversity to the right tail of the distribution,
owing to the increased divergence of the H5Nx viruses com-
pared with the H5N1 viruses; 2) it increased the number of
putative clusters with low internal divergence, as a large
amount of the H5Nx viruses possess highly similar HA genes
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owing to both sampling biases during outbreaks and the rel-
ative short circulation time following their emergence. This
shift in the distribution reduced the within-cluster limit com-
pared to that of the 2015 data set (supplementary fig. S2,
Supplementary Material online).

Filtering the 2015-update and 2018 data sets (see
“Materials and Methods” section) resulted in changes in
tree topology and overall sequence diversity, and conse-
quently altered the ecological inference of source–sink clus-
ters circulating from 1997 to 2005 (supplementary table S1,
Supplementary Material online). However, the ecological
inferences of the second major wave of expansion, the
post-2005 global expansion characterized by cluster
1.2.1.1.1.3.2 and its descendants 1.2.1.1.1.3.2.1–8, were largely
consistent across the 2009 (cluster 1.3.1.1.2.2.2), 2015 (cluster
1.4.1.5), and 2018 (cluster 1.2.1.1.1.3.2) trees, including a
shared core source population (supplementary table S1,
Supplementary Material online).

The WHO/OIE/FAO clade 2.3.4.4 viruses are of interest
owing to their reassortment promiscuity and rapid global
expansion. PhyCLIP delineates the clade 2.3.4.4 viruses into
two distinct lineages, seeded from a source population of
viruses circulating in east and south central China and
Malaysia in 2005–2010 (cluster 7.8, supplementary table S1,
Supplementary Material online). The first lineage circulated in
east, south central, and northeast China from 2008 to 2011
(7.8.2, supplementary fig. S11 and table S1, Supplementary
Material online). The second lineage (7.8.3) circulated in
south central and east China in 2008–2012 and seeded six
distinct sub-lineages: Lineage 7.8.3.1 circulated in China from
2010 to 2014 before expanding to Vietnam and circulating
there for 2014–2015. Lineage 7.8.3.2 captures the global ex-
pansion of viruses from 2009 onwards. This includes the early
subclade of H5N8 viruses described in Lycett et al. (The Global
Consortium for H5N8 and Related Influenza Viruses 2016).
Lineage 7.8.3.3 was restricted to China and was detected in
2013–2016. Lineage 7.8.3.4 also captures a pan-national line-
age that was detected from 2014 to 2016, and captures the
more recent H5N8 subclade described in Lycett et al. (The
Global Consortium for H5N8 and Related Influenza Viruses
2016). Lineage 7.8.3.5 circulated in east and southeast Asia
from 2013 to 2017. Lineage 7.8.3.6 is seeded from a source
population of viruses circulating in east and southeast Asia,
expanding into multiple co-circulating H5N6 southeast Asian
lineages from 2013 onwards (supplementary table S1,
Supplementary Material online).

Benchmarking Against Other Phylogenetic Clustering
Tools
PhyCLIP was benchmarked for performance against two
open-source nonparametric clustering tools, PhyloPart
(Prosperi et al. 2011) and ClusterPicker (Ragonnet-Cronin
et al. 2013). Both tools require a phylogenetic tree as input,
as well as a user-specified distance threshold and minimum
statistical node-support level. In addition, both algorithms
carry out a depth-first traversal of the tree, considering sub-
trees as putative clusters if the node support is above the
user-defined level. In PhyloPart, the user specifies a percentile

of the global pairwise patristic distance distribution as a
threshold. If the median of the pairwise patristic distances
of the putative cluster is below the percentile threshold, a
cluster is designated. ClusterPicker requires a user-defined
maximum pairwise genetic distance (calculated as p-distance
directly from the sequences) threshold for cluster designation.
In both tools, a subtree is designated as a cluster if it meets the
respective clustering criteria. If the subtree violates the clus-
tering criteria, the algorithm tests the children of the subtree
as potential clusters until a leaf is reached, when no cluster is
designated in the path.

In contrast, traversal order has no bearing on the clustering
outcomes of PhyCLIP. Although PhyCLIP parses the input
phylogeny by level-order, prior to ILP optimization, PhyCLIP
dissociates outlying taxa if li < WCL and proceeds with full
distal dissociation heuristics described in the “New Approach”
section if otherwise for every internal node i in the input tree.
In both cases, tip dissociation is performed by ranking taxa
based on their patristic distance to node i (i.e., the common
ancestor) without consideration of their topological place-
ment. Finally, all putative subtrees (i.e., tree nodes) after distal
dissociation are given equal consideration by ILP optimization
to maximally assign cluster membership to all tips (see “New
Approach” section). In doing so, not only does PhyCLIP allow
for paraphyletic clustering, tree traversal order does not affect
clustering results.

Accepted practice for these tools is to incorporate previ-
ous knowledge of sequence divergence into a distance thresh-
old or to calibrate the threshold over a tolerable range with
metadata or expert consensus. The two methods were ap-
plied to the 2009-update phylogeny (n ¼ 1,224 sequences)
with thresholds ranging from 0.005 to 0.05 substitutions/site.
For PhyloPart, the respective percentile of the global pairwise
patristic distance distribution was chosen to match the dis-
tance threshold. Required bootstrap support level was set to 0
in both methods to make it comparable with PhyCLIP, which
lacks node-support criteria. The optimal threshold was se-
lected by maximization of the mean silhouette index across
the clustering partitions (see “Materials and Methods” sec-
tion). All programs were run on the Ubuntu 16.04 LTS oper-
ating system with an Intel Core i7-4790 3.60 GHz CPU.

The optimal thresholds and clustering statistics for each of
the methods are reported in supplementary table S4,
Supplementary Material online. A direct comparison of clus-
ter inference between PhyCLIP and the other methods is
difficult owing to notable differences in cluster definitions,
as these methods were largely designed to detect highly re-
lated clusters of sequences linked by direct transmission
events. The optimal clustering result for ClusterPicker by sil-
houette maximization had a very low maximum genetic dis-
tance threshold at 0.5% (supplementary fig. S12,
Supplementary Material online). This resulted in a highly
stratified tree with 246 small, highly related clusters and
33.8% outliers, compared with PhyCLIP’s 39 clusters and 2%
outliers (VI to PhyCLIP of 2.7) (supplementary fig. S13 and
table S4, Supplementary Material online).

Clustering results between PhyCLIP and PhyloPart’s opti-
mal results showed better correspondence, with PhyloPart
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designating 37 clusters to PhyCLIP’s 39 (VI to PhyCLIP of 0.64,
supplementary fig. S13 and table S4, Supplementary Material
online). However, the cluster delineations and inferences
drawn are substantially different between the two methods
(supplementary table S5, Supplementary Material online).
The nomenclature scheme developed for PhyCLIP was ap-
plied to PhyloPart’s optimal clustering result for a more
meaningful comparison. PhyCLIP’s distal dissociation ap-
proach allows for the identification of paraphyletic clusters,
forming supercluster topologies throughout the tree (as dis-
cussed above). Notably, PhyloPart’s depth-first approach and
monophyletic cluster criteria prevent it from designating par-
aphyletic clusters, obscuring the suggestive source–sink dy-
namics of H5N1’s expansion wave identified by PhyCLIP’s
distal dissociation approach (supplementary table S5,
Supplementary Material online). Concurrently, PhyloPart is
unable to identify hierarchical clusters, which PhyCLIP iden-
tifies as divergent trajectories nested in larger clusters (sup-
plementary fig. S13, Supplementary Material online).

PhyCLIP is appreciably more computationally intensive
than PhyloPart and ClusterPicker as it not only parses the
global pairwise patristic distance distribution of the phylog-
eny but recursively recalculates the distribution for subtrees
in the distal dissociation approach, performs hypothesis test-
ing across every combinatorial pair of subtrees to test their
intercluster divergence, as well as optimize the ILP model. To
relieve some of the computational cost, PhyCLIP is written in
Python 2.7 employing multiprocessing modules to parallelize
the computational tasks involved resulting in �3.2� times
speedup with 8 CPU cores relative to a single core run
(table 1).

Despite the differences in computation time, the principal
advantage of PhyCLIP is its use of the background genetic
diversity to inform its within-cluster limit without the need to
arbitrarily define it or calibrate it over a range of thresholds.
This is especially helpful as there is typically a lack of prior
knowledge on meaningful delineation of phylogenetic units
for most pathogens to recommend a range of distance
thresholds. In addition, PhyCLIP’s distal dissociation and out-
lier detection approaches are capable of identifying informa-
tive paraphyletic and hierarchical clusters, unlike the other
tools.

Discussion
PhyCLIP provides a statistically principled, phylogeny-
informed framework to assign cluster membership to taxa
in phylogenetic trees without the introduction of arbitrary

distance thresholds for cluster designation. PhyCLIP uses the
pairwise patristic distance distribution of the entire tree to
inform its limit on within-cluster internal divergence against
the background genetic diversity of the population included
in the phylogeny. Testing against the global background ge-
netic diversity indicates whether the putative clustered
sequences are sufficiently more related to one another than
to the rest of the data set to be designated a distinct cluster.

PhyCLIP’s cluster assignment is agnostic to metadata but is
capable of capturing the geographic and temporal structure
of the H5 phylogeny informatively. PhyCLIP recovers the over-
all structure of the current WHO/OIE/FAOH5 nomenclature
developed on a sequence divergence threshold but delineates
more informative, higher resolution clusters that capture geo-
graphically distinct subpopulations. PhyCLIP therefore plau-
sibly provides the foundation for an alternative nomenclature
that minimizes the limitations of currently employed
approaches.

PhyCLIP’s clustering is expected to improve with the ad-
dition of new sequences to the tree as new information about
the genetic diversity and evolutionary trajectory of the path-
ogen becomes known and can be incorporated into the back-
ground diversity of the tree that informs the algorithm. In
addition, topological information that captures how sequen-
ces are related by common ancestors is inherently incorpo-
rated in PhyCLIP owing to its distal dissociation approach.
The distal dissociation approach also does not assume all
clusters are monophyletic as the most recent common an-
cestor of all tips in a cluster is not assumed to have any
descendants. As such, PhyCLIP can identify nested clusters
both as clusters with sufficiently high information content to
meet the statistical requirements of cluster designation or
sufficiently diverse clusters that are dissociated from their
ancestral nodes. The designation of divergent descendant
clusters nested within a supercluster suggestively captures
source–sink population dynamics that may be informative
about the evolutionary trajectory of the clustered sequences.
At the same time, users could also opt for PhyCLIP to sub-
sume subclusters that do not violate the statistical criteria of
the parent clusters into the latter, aiding higher level inter-
pretation. Importantly, the distal dissociation approach also
identifies highly divergent outlying sequences that may be
indicative of under-sampled diversity.

For pathogens that evolve more rapidly than they spread
geographically, it is expected that clusters of related sequen-
ces would be temporally structured. However, it is important
to consider the distribution of sampling times, which can
drive clustering artificially. This is especially pertinent for
transmission dynamic studies, where clustering is often driven
by heterogeneity in sampling rates across subpopulations
rather than heterogeneity in transmission rates (Poon 2016;
McCloskey and Poon 2017). PhyCLIP can be applied to time-
resolved phylogenies in heterochronous data sets. However,
molecular clock analyses make strong biological assumptions
and require sufficient temporal signal to inform the model
reconstructing the statistical relationship between genetic di-
vergence and time (Rambaut et al. 2016). These models rely
on high-quality sampling dates and alignments free of

Table 1. Benchmarking the Performance of PhyCLIP Against Widely
Used Phylogenetic Clustering Tools.

Approach Time to
Completion

Peak Memory
Usage

Number of
CPUs

PhyCLIP 1 h 4 min 2.0 GB 8
3 h 25 min 1.7 GB 1

ClusterPicker 2.8 min 0.3 GB 1
PhyloPart 10.6 min 4.1 GB 8

Phylogenetic Clustering by Linear Integer Programming . doi:10.1093/molbev/msz053 MBE

1591

D
ow

nloaded from
 https://academ

ic.oup.com
/m

be/article-abstract/36/7/1580/5373046 by guest on 28 February 2020

https://academic.oup.com/mbe/article-lookup/doi/10.1093/molbev/msz053#supplementary-data
https://academic.oup.com/mbe/article-lookup/doi/10.1093/molbev/msz053#supplementary-data
https://academic.oup.com/mbe/article-lookup/doi/10.1093/molbev/msz053#supplementary-data
https://academic.oup.com/mbe/article-lookup/doi/10.1093/molbev/msz053#supplementary-data
https://academic.oup.com/mbe/article-lookup/doi/10.1093/molbev/msz053#supplementary-data
https://academic.oup.com/mbe/article-lookup/doi/10.1093/molbev/msz053#supplementary-data
https://academic.oup.com/mbe/article-lookup/doi/10.1093/molbev/msz053#supplementary-data
https://academic.oup.com/mbe/article-lookup/doi/10.1093/molbev/msz053#supplementary-data
https://academic.oup.com/mbe/article-lookup/doi/10.1093/molbev/msz053#supplementary-data
https://academic.oup.com/mbe/article-lookup/doi/10.1093/molbev/msz053#supplementary-data


sequence error and laboratory-altered strains or recombinant
viruses to reconstruct valid and unbiased time-scaled phylog-
enies (Rambaut et al. 2016). As PhyCLIP centrally operates on
the branch lengths of the phylogeny, we recommend it is only
applied to robust time-resolved phylogenies after a thorough
investigation of the temporal signal as well as a rigorous as-
sessment of model and prior assumptions (Boskova et al.
2018).

PhyCLIP’s methodology has limitations. Notably, PhyCLIP
is tree-based and is therefore subject to error in phylogenetic
reconstruction. PhyCLIP does not include criteria for the sta-
tistical support of nodes under consideration, which omits
uncertainty in phylogenetic reconstruction. However, high
statistical support for a node does not necessarily indicate
that all sequences subtended by it are highly related but
merely reflects the statistical support of the bipartition
to the exclusion of other sequences. In addition, the re-
lationship between the statistical significance of internal
nodes and population dynamics is unresolved as is an
appropriate definition of a robustly supported node
(Zharkikh and Li 1992; Susko 2009; Anisimova et al.
2011; Kumar et al. 2012; Volz et al. 2012). There is often
less phylogenetic signal to resolve internal nodes subtend-
ing small subtrees in measurably evolving populations,
increasing uncertainty in the arrangement of the internal
structure of smaller subtrees. If a statistical support
threshold is set for nodes, these viruses will consistently
be left unclustered or will be forced to coalesce with more
ancestral nodes subtending larger clusters, which would
violate PhyCLIP’s statistical framework.

As with any phylogenetic clustering methods, PhyCLIP is
also sensitive to variation in sampling rates (Volz et al. 2012).
There is a significant surveillance bias toward certain patho-
gens (e.g., HPAI H5) owing to their consequences for animal
and human health. The evolution and divergence of these
pathogens are currently captured in surveillance data as a
more accurate approximation to a continuum of evolution.
PhyCLIP’s clustering is strongly influenced by the diversity in
the input population it tests against and will perform best
when the background diversity of the phylogeny is complete
or representative.

Clusters identified by PhyCLIP should not be interpreted as
sequences linked by rapid direct transmission events.
Transmission dynamic studies aim to integrate epidemiolog-
ical clustering with phylogenetic clusters to study transmis-
sion chains or local outbreak networks by assuming putative
transmission links between highly related sequences (Hassan
et al. 2017). Data sets from transmission dynamic studies are
likely to be sampled from localized outbreaks over a very
specific period of time. The global distribution generated
from the resulting phylogenetic trees will not contain suffi-
cient information or power to meaningfully compare subpo-
pulations to identify high confidence transmission clusters.

In conclusion, PhyCLIP provides an automated, statistically
principled framework for phylogenetic clustering that can be
generalized to research questions concerning the identifica-
tion of biologically informative clusters in pathogen
phylogenies.

Materials and Methods

Robust Estimator of Scale (Deviation)
PhyCLIP computes the robust estimator of scale (r) either as
the MAD or Qn. Note that MAD may not suitably account
for any potential skewness of the pairwise sequence patristic
distance distribution as it inherently assumes symmetry
about the median (�l). On the contrary, Qn, an alternative
estimator of scale proposed by Rousseeuw and Croux (1993),
is as robust as MAD (i.e., 50% breakdown point), calculated
solely using the differences between the values in the distri-
bution without needing a location estimate, and has been
proven to be statistically more efficient in both Gaussian and
non-Gaussian distributions relative to MAD.

Integer Linear Programming Model
Here, we fully elaborate the ILP model underlying PhyCLIP. Let
n1; n2; . . . ; ni; . . . ; nN be the set of binary variables indi-
cating if subtree i satisfies the conditions for clustering as a
clade (ni ¼ 1 if it does and ni ¼ 0 vice versa, fig. 2C). Each
sequence j subtended by subtree i is also assigned a binary
variable lj;i indicating if the sequence is clustered under sub-
tree i (lj;i ¼ 1 if j is clustered under node i and lj;i ¼ 0 vice
versa, fig. 2C). PhyCLIP then formulates the phylogenetic clus-
tering problem as an ILP model with the objective to maxi-
mize the number of sequences assigned with cluster
membership:

max

X

j;i

lj;i (2)

subject to the following constraints:

lj;i � ni 8 j 2 Li; i : (3)

Constraint (3) stipulates that sequence j can be clustered
under subtree i if and only if subtree i is a potential clade
(ni ¼ 1).

lj;i � 2 � ni � nk 8 j 2 fLi; Lkg; k; i < k : (4)

If sequence j is subtended by subtrees i and k, wherein i is
ancestral to k and both nodes are potential clusters
(ni ¼ nk ¼ 1), constraints (3) and (4) stipulate sequence j
will not be clustered under the ancestor node i. Implementing
these constraints across all pairwise combinations of subtrees
subtending sequence j in turn constrains j to be clustered
under the most descendant node k possible.

X
i
lj;i � 1 8 j : (5)

Constraint (5) stipulates that each sequence can only be
clustered under a single subtree, hence abrogating any fuzzy
clustering.

Cðni � 1Þ �
X

j
lj;i � S 8 i ; (6)

where C is any arbitrarily large positive constant. Constraint
(6) requires all clusters to contain at least S number of taxa as
defined by the user (fig. 1B and C).
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Cðni � 1Þ � WCL � li 8 i : (7)

Constraint (7) ensures that li of all clades fall below the
stipulated WCL limit.

Cð2 � ni � nkÞ � qi;k � FDR 8 i; k 6¼ i ; (8)

where qi;k is the Benjamini–Hochberg corrected p value test-
ing if subtrees i and k are significantly divergent from one and
another under the user-defined significance level, FDR.
Constraint (8) is the intercluster divergence constraint.
Intercluster divergence between subtrees i and k is tested
under the null hypothesis that the pairwise sequence distance
distributions of i and k are empirically equivalent to that if the
two subtrees were clustered together. This can be done either
by the putative Kolmogorov–Smirnov (KS) test or Kuiper’s
test.

Although both tests are nonparametric, the Kuiper’s test
statistic incorporates both the greatest positive and negative
deviations between the two distributions whereas the KS test
statistic is defined only by their maximum difference. As a
result, the Kuiper’s test becomes equally sensitive to differ-
ences to the tails as well as the median of the distributions but
the KS test works best when the distributions differ mostly at
the median. In other words, the KS test is good at detecting
shifts between the distributions but lacks the sensitivity to
uncover spreads between the distributions characterized by
changes in their tails. Kuiper’s test is, however, sensitive to
detect both types of changes in distributions.

There are two scenarios under which qi;k may be
calculated:

(i) Subtree i is ancestral to k. The hypothesis test assumes
the null hypothesis that the pairwise sequence patristic dis-
tance distribution of subtree k is statistically identical to the
pairwise sequence patristic distance distribution of its an-
cestor i.
(ii) Neither subtree i nor k is an ancestor of the other. In this
case, two hypothesis tests are carried out comparing the
distribution of each subtree to the distribution of pairwise
sequence patristic distance should both subtrees be com-
bined as a single cluster and we take the more conservative
qi;k ¼ maxfqi; combined; qk; combinedg.

Nomenclature
Traversing the output clusters of PhyCLIP by preorder of the
input phylogeny, a unique number is assigned to any cluster
with no immediate ancestral supercluster precursor to it (i.e.,
parent node of the cluster node is not part of any PhyCLIP
clusters). Otherwise, the descendant cluster in question is
designated as a child cluster should its membership size be
>25th percentile of PhyCLIP’s output cluster size distribution
(i.e., for having proliferated in numbers substantial enough to
be deemed a progeny cluster). Every child cluster of a super-
cluster is assigned a progeny number separated by a decimal
point (e.g., 1.2 refers to the second child cluster of supercluster
1). However, descendant clusters that fall below the cluster
size cut-off are distinguished from child clusters as nested
clusters, each assigned an address in the form of a

parenthesized letter, alphabetized by tree traversal order, pre-
fixed by its parent supercluster nomenclature (e.g., 1.1[c]
refers to the third nested cluster of supercluster 1.1).
Nested clusters in superclusters fundamentally have different
properties from the sensitivity-induced nested clusters dis-
cussed in “New Approach” section and cannot be subsumed
as it will violate the within-cluster limit of the parent super-
cluster. The structure of the resultant clustering topology is
highlighted in figure 3.

Phylogenetic Analyses
PhyCLIP’s performance was evaluated on an empirical data
set. The sequence data sets used to construct the HA gene
phylogenetic trees underlying the WHO/OIE/FAO nomencla-
ture for the A/goose/Guangdong/1/1996 (Gs/GD/96)-like H5
avian influenza viruses were downloaded from GISAID
(WHO/OIE/FAO H5N1 Evolution Working Group 2008;
WHO/OIE/FAO H5N1 Evolution Working Group 2012;
WHO/OIE/FAO H5N1 Evolution Working Group 2014;
Smith et al. 2015). The primary analysis is based on the full
data set included in the 2009 (n ¼ 1,224) and 2015 (n ¼
4,357) nomenclature updates. Viruses that were inconsis-
tently included across WHO/OIE/FAO updates were followed
up and included (WHO/OIE/FAO HN Evolution Working
Group 2009; Smith et al. 2015). Sequences were curated based
on criteria defined by the H5 nomenclature: sequences with
more than 5 ambiguous nucleotides, with a sequence length
shorter than 60% of the alignment, or with frameshifts or
duplicated by name were removed. For the 2018 phylogeny,
all avian and human viruses from the Gs/GD-like H5 lineage
were downloaded from GISAID up to April 2018, including
H5Nx subtypes H5N2, H5N3, H5N5, H5N6, and H5N8. An
alternative filtering approach compared to the published
WHO nomenclature approach was applied to ensure a
data set of high-quality sequences that would be robust to
error in phylogenetic reconstruction as PhyCLIP is inherently
sensitive to topological information. In this approach, dupli-
cate sequences and sequences with a length below 95% of the
full HA sequence or more than 1% ambiguous nucleotides
were discarded. Sequences were aligned with MAFFT v7.397
and trimmed to the start of the mature protein (Katoh et al.
2002). Each sequence set was annotated with the WHO/OIE/
FAOH5 nomenclature using LABEL(v0.5.2), and the version of
the module corresponding to the nomenclature update of
the data set (e.g., H5v2015 module for the full tree from the
nomenclature update in 2015) (Shepard et al. 2014).
Maximum likelihood phylogenetic trees were constructed
for each data set with RAxML 8.2.12 under the
GTRþGAMMA substitution model, and rooted to Gs/GD/
96 (Stamatakis 2014). Phylogenetic trees were visualized using
Figtree (http://tree.bio.ed.ac.uk/software/figtree/; last accessed
March 15, 2019) and ggtree (Yu et al. 2017).

Silhouette Index
The silhouette index is based on the distance, here patristic
distance, of each cluster member to other cluster members
compared with the distance to its nearest neighbors
(Rousseeuw 1987). Silhouette values approaching one
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indicate that the cluster member is correctly assigned,
whereas values close to zero indicate that the sequence is
equally matched to its neighboring cluster. A negative
Silhouette index indicates that the sequence is more closely
related to the neighboring cluster than to its fellow cluster
members. Calculation of the silhouette index was performed
in R (R Core Team 2016).

Code Availability
PhyCLIP is freely available on github (http://github.com/
alvinxhan/PhyCLIP; last accessed March 15, 2019) and docu-
mentation can be found on the associated wiki page (http://
github.com/alvinxhan/PhyCLIP/wiki; last accessed March 15,
2019).

Supplementary Material
Supplementary data are available at Molecular Biology and
Evolution online.
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