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Abstract 
The WW domain is a modular protein structure 
that recognizes the proline-rich Pro–Pro-x-Tyr 
(PPxY) motif contained in specific target 
proteins. The compact modular nature of the 
WW domain makes it ideal for mediating 
interactions between proteins in complex 
networks and signaling pathways of the cell 
(e.g. the Hippo pathway). As a result, WW 
domains play key roles in a plethora of both 
normal and disease processes. Intriguingly, 
RNA and DNA viruses have evolved strategies 
to hijack cellular WW domain–containing 
proteins and thereby exploit the modular 
functions of these host proteins for various steps 
of the virus lifecycle, including entry, replication, 
and egress. In this review, we summarize key 
findings in this rapidly expanding field, in which 
new virus–host interactions continue to be 
identified. Further unraveling of the molecular 
aspects of these crucial virus–host interactions 
will continue to enhance our fundamental 
understanding of the biology and pathogenesis 
of these viruses. We anticipate that additional 
insights into these interactions will help support 

strategies to develop a new class of small-
molecule inhibitors of viral PPxY–host WW 
domain interactions that could be used as 
antiviral therapeutics.  
 
Introduction 
     The modular, compact nature of the WW-
domain contributes to its status as a prominent 
mediator of a wide array of protein-protein 
interactions in the cell. WW-domain ligands 
include short proline-rich motifs with the Proline-
Proline-x-Tyrosine (PPxY) motif serving as the 
consensus ligand (1-3). In mammalian cells, 
interactions between WW-domain and PPxY-
containing proteins regulate a plethora of 
pathways that are involved in processes such as 
protein ubiquitination, signaling, sorting, 
migration, and degradation (4-27). For example, 
key WW-domain/PPxY interactions are critical 
for mediating the formation of protein complexes 
in the Hippo signaling pathway, which regulates 
cell proliferation, migration, and apoptosis 
(18,24,26,28-30). In addition, all members of the 
HECT (Homologous to the E6AP Carboxyl 
Terminus) family of E3 ubiquitin ligases contain 
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multiple WW-domains involved in binding to 
specific host PPxY-containing substrates, 
leading to modulation of their stability, 
trafficking/localization, and/or signaling 
functions (14,31-37).  
     Intriguingly, a growing body of literature has 
demonstrated that modular WW-domain/PPxY 
interactions not only are critical for regulating 
cellular pathways, but also play key roles in 
regulating one or more steps in the lifecycles of 
many viral pathogens (38-46). Not surprisingly, 
select DNA and RNA viruses have evolved the 
ability to mimic these protein-protein 
interactions by using virally-encoded PPxY-
containing proteins to compete with cellular 
counterparts for binding to specific host proteins 
bearing one or more of these small modular 
WW-domains, thus in essence, hijacking 
cellular pathways and networks which ultimately 
impact both the virus and the host (see Figs. 1, 
2, Table 1). For example, the initial discovery 
that viruses encode PPxY motifs to hijack host 
proteins to facilitate virus egress had a 
tremendous impact on the field since it 
demonstrated that viruses usurp host proteins 
and machinery to complete the late stage of 
virus-cell separation most efficiently. This 
discovery opened up an entirely new field of 
research on virus-host interactions that regulate 
egress. For example, the PPxY motif contained 
within matrix proteins encoded by RNA viruses 
such as retroviruses and filoviruses was termed 
a Late (L) domain due to its role in facilitating the 
late step in virus-cell separation or pinching-off 
(budding). In addition to the PPxY motif, 
PT/SAP and YxxL were also identified as 
functional L-domain motifs in specific RNA 
viruses. Intriguingly, the RNA viral L-domains 
were found to be interchangeable and movable 
while retaining their function in recruiting host 
proteins to promote virus egress (47-50). In 
contrast, DNA containing viruses such as 
adenoviruses and herpesviruses express 
PPxY-containing proteins that interact with 
specific host WW-domain bearing proteins to 
facilitate virus entry/internalization and affect 
virus replication and cancer progression, 
respectively.  
     The viruses chosen for discussion here 
represent the best characterized examples of 
viruses that encode PPxY motifs that mediate 

physical and functional interactions with host 
WW-domain bearing proteins to influence 
specific stages of the virus lifecycle. Part of the 
excitement about this field is that viruses that 
are very different from one another in terms of 
their genetic material, morphology, lifecycle, 
and disease all have evolved to encode one or 
more PPxY motifs that interact with specific host 
proteins to impact their lifecycles. We will 
discuss key findings that highlight the physical 
and functional nature of a wide array of virus-
host PPxY/WW-domain interactions, describe 
how usurping of host proteins affects the biology 
and pathogenesis of these viruses, and finally 
describe recent progress to identify and develop 
antiviral therapeutics that target and block these 
modular virus-host interactions as part of a 
novel host-oriented strategy to combat and treat 
viral infections.  
 
I. Modular Interactions and Virus Egress 
A. Retroviruses:  
1. Human Immunodeficiency Virus 1 (HIV-1) 
     Pioneering studies that first identified viral 
Late (L) domains  and subsequently, their ability 
to interact with modular WW-domains of host 
proteins were undertaken with the Gag proteins 
encoded by HIV-1 and Rous Sarcoma Virus 
(RSV) (50-53). Indeed, the PPPY sequence 
located in the N-terminal p2b region of the Rous 
Sarcoma Virus Gag protein was the first PPxY 
type L-domain shown to play a key role in 
facilitating virion egress by interacting with 
cellular WW-domains (51). One of the first WW-
domain bearing host proteins implicated in viral 
PPxY-mediated egress was Nedd4 (Neuronal 
precursor cell-Expressed Developmentally 
Down-regulated 4); the prototypic member of 
the HECT family of E3 ubiquitin ligases. Indeed, 
a plethora of reports soon followed that linked 
the budding pathways of several RNA viruses to 
either Nedd4, Nedd4 family members, and/or 
ubiquitin (39,43-45,54-68). Although HIV-1 Gag 
does not possess a PPxY motif, budding of HIV-
1 was shown to be positively regulated by 
ubiquitin and E3 ubiquitin ligases such as 
Nedd4, likely via an indirect mechanism. For 
example, Strack et al, showed that 2–5% of the 
HIV-1 p6gag found in virions was 
monoubiquitinated, and that chimeric Gag 
constructs with L domains from RSV and HIV-1 
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both produced Gag-ubiquitin conjugates in 
virus-like particles (VLPs). Moreover, inhibition 
of the proteasome, which reduces the levels of 
free ubiquitin in the cell, limited Gag VLP 
formation (69,70). More recently, Mercenne et 
al. demonstrated that PPxY-containing host 
protein angiomotin (Amot) could bind both 
Nedd4L and HIV Gag and serve as an adaptor 
protein to promote early stages of HIV-1 
assembly and budding (71). While our 
understanding of the precise mechanistic role of 
ubiquitin and E3 ubiquitin ligases in facilitating 
virus budding still remains unclear, one 
possibility is that mono-ubiquitination of viral 
matrix proteins allows them to engage one or 
more members of the host Endosomal Sorting 
Complex Required for Transport (ESCRT) 
pathway, which subsequently mediates efficient 
virus-cell separation and egress of mature 
virions from the plasma membrane (72,73). In 
contrast, other reports suggest that different 
mechanisms may also be involved. For 
example, a functional link between Nedd4 family 
members and HIV-1 budding was revealed by 
studies demonstrating that overexpression of 
Nedd4L could rescue budding of an HIV-1 Gag 
protein lacking an L-domain motif (62,64,74). In 
addition, Nedd4-mediated ubiquitination of 
ESCRT proteins such as Tsg101, rather than 
PPxY-deficient viral proteins such as HIV-1 
Gag, may serve to activate ESCRT and promote 
budding of HIV-1 (75). Alternatively, Weiss et al. 
reported that Nedd4-mediated ubiquitination of 
HIV-1 Gag was not sufficient to stimulate virus 
budding, but rather the synthesis of K63-linked 
ubiquitin chains in the vicinity of the viral bud 
was critical for E3 ligase-mediated virus budding 
(65). Indeed, the authors postulate that the K63-
linked ubiquitin chains on viral or cellular 
substrates are sensed or recognized by 
components of the ESCRT machinery, which is 
subsequently recruited to facilitate virus egress 
(65). 
 
2. Rous Sarcoma Virus (RSV) 
     Unlike HIV-1, retroviruses whose Gag 
proteins do contain PPxY motifs can physically 
and functionally interact directly with the 
modular WW-domains of either Nedd4, or 
Nedd4 family members to facilitate their egress 
and spread.  For example, early work by 

Kikonyogo and colleagues in which they 
screened a chicken embryo cDNA expression 
library with a peptide containing the PPxY L-
domain sequence from RSV Gag-p2b, identified 
two WW domain interactors they named Late 
Domain-Interacting proteins 1 and 2 (LDI-1 and 
2) (56). LDI-1 was found to share sequence 
homology with Xenopus Nedd4, while LDI-2 
exhibited homology to other members of the 
Nedd4 family, specifically human WWP1 and 
the murine E3 ubiquitin ligase, ITCH (also 
known as AIP4) (56). The authors also 
demonstrated that budding of RSV Gag 
required the PPxY L-domain, and that 
overexpression of the isolated WW domains of 
LDI-1 acted in a dominant-negative manner to 
inhibit budding (56,76). In a follow-up study, 
Vana and colleagues demonstrated that a 
catalytically active LDI-1 protein was required to 
promote RSV Gag egress, as a catalytically 
inactive LDI-1 mutant blocked Gag release. 
While they were able to detect both mono- and 
polyubiquitinated forms of Gag within cells, the 
monoubiquitinated form of Gag was most 
prevalent in budded VLPs, and ubiquitination of 
RSV Gag was dependent on its PPxY L-domain 
(45).  
 
3. Human T-Cell Leukemia Virus 1 (HTLV-1) 
     The PPPYVEPTAP sequence at the C-
terminus of the HTLV-1 Gag protein contains a 
PPxY and PTAP L-domain motif, both of which 
were shown to play a role in facilitating release 
of HTLV-1 Gag VLPs; however, the PPxY motif 
appeared to be more important for efficient 
egress (39,43,59). HTLV-1 Gag was shown to 
interact with WW-domains of E3 ligases Nedd4, 
BUL1, and HECW2 (39,43,59), and results from 
Blot et al. suggested that the HTLV-1 PPxY 
motif first recruited host Nedd4, which then 
allowed the virus to engage the ESCRT 
complex, specifically Tsg101, to promote 
efficient assembly and egress of virus particles 
(59). Indeed, Tsg101 is a key component of the 
ESCRT-1 complex that can interact with viral 
PTAP L-domain motifs, and can also bind to 
ubiquitinated proteins, thus mediating their 
engagement of the ESCRT machinery.  Later 
studies both confirmed and expanded the 
repertoire of host WW-domain bearing E3 
ligases hijacked by the PPxY motif of HTLV-1 
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Gag to benefit egress and spread of virus 
particles. For example, HECT family E3 
ubiquitin ligase WWP1, which possesses four 
WW-domains, was shown to ubiquitinate a 
lysine residue at position 74 of HTLV Gag to 
promote efficient virus egress (77,78). In 
contrast, a lysine-74 mutant of HTLV-1 Gag was 
not ubiquitinated and was budding defective. 
Dorjbal and colleagues (66) went on to test nine 
members of the Nedd4 family of E3 ubiquitin 
ligases (Nedd4, Nedd4L, BUL1, BUL2, WWP1, 
WWP2, ITCH, SMURF1, and SMURF2) for their 
ability to promote egress of HTLV-1, and found 
that ITCH was the main contributor to HTLV-1 
budding. Also of interest was their finding that 
the physical binding efficiencies between the 
viral PPxY motif and the various host WW-
domains did not correlate with their functional 
effect on HTLV-1 budding (66).  
 
4. Murine Leukemia Virus (MLV) 
     Studies by Martin-Serrano and colleagues 
helped to solidify the functional link between 
HECT E3 ubiquitin ligases recruited by viral 
PPxY motifs and the ESCRT pathway during 
egress of wild type or chimeric Murine Leukemia 
Virus (MLV) Gag proteins. Using an array of 
WW-domain containing E3 ligases and chimeric 
MLV Gag proteins containing the PPxY motifs 
and flanking residues from either host amiloride-
sensitive sodium channel ENaC, RSV Gag-p2b, 
or Ebola virus VP40 proteins, they 
demonstrated that the E3 ligase WWP1 was 
recruited to sites of MLV budding in a PPxY-
dependent manner, and that enhancement of 
budding required a catalytically active HECT 
domain (79). They concluded that the HECT 
ubiquitin ligases likely served as co-factors for 
viral PPxY-mediated budding and provided a 
critical link to the ESCRT complex that mediated 
the final step of virus-cell separation. In a later 
study by the same group, they demonstrated 
that host PPxY containing arrestin-related 
trafficking (ART) proteins could function as 
adaptors, linking WW-domain containing HECT 
ubiquitin ligases to the ESCRT machinery (80). 
Indeed, they showed that the ARTs could be 
recruited to sites of PPxY-dependent viral 
budding and likely served as a platform for 
ubiquitination during the budding process (80). 
Thus, it is interesting to speculate that the 

PPxY-containing viral matrix proteins have 
evolved to mimic and/or compete with cellular 
ART-like proteins for binding to modular WW-
domains to regulate virus egress and spread.  
 
B. Filoviruses: 
1. Ebola (EBOV) and Marburg (MARV) 
Viruses   
     Filoviruses (Ebola [EBOV] and Marburg 
[MARV]) are emerging pathogens that can 
cause severe hemorrhagic disease with high 
mortality rates in primates and humans (81-83). 
There has been growing interest in elucidating 
the molecular mechanisms used by these 
viruses to bud and spread from cells, as well as 
in identifying novel virus-host interactions that 
contribute to the transmission and pathogenesis 
of these deadly viruses. The filovirus matrix 
protein, VP40, is the major structural component 
of filoviruses and plays a key role in directing 
virion assembly and promoting virion egress 
during late stages of filovirus replication (54,84-
88). Intriguingly, a number of groups have 
shown that independent expression of filovirus 
VP40 leads to the production and egress of 
filamentous VLPs that mimic the morphology of 
authentic filoviruses (44,54,89-94). Thus, VP40 
has been the focus of a plethora of studies to 
examine the molecular mechanisms and host 
interactors that regulate filovirus egress. As 
described above for the Gag proteins of many 
retroviruses, L-domains are highly conserved in 
the VP40 matrix proteins of all known EBOV and 
MARV species. Indeed, both EBOV and MARV 
VP40 proteins contain a PPxY-type L-domain 
motif that can compete with cellular 
counterparts for binding to specific WW-domain 
bearing host proteins, thus hijacking critical 
cellular pathways that impact both the virus and 
the host. It should be mentioned that EBOV 
VP40 and MARV NP (nucleoprotein) proteins 
contain a PT/SAP-type L-domain as well, and 
PT/SAP has been proposed to interact with and 
recruit host Tsg101 to facilitate virion egress 
(91,95-98). Recent findings describing key 
modular interactions between filoviral PPxY 
motifs and host WW-domain interactors will be 
discussed below.  
     Harty and colleagues were the first to 
demonstrate a role for the PPxY motif of EBOV 
VP40 in budding of VLPs and in interacting 
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physically and functionally with host WW-
domains of E3 ligases Nedd4 and its yeast 
ortholog Rsp5 (54). A series of reports soon 
followed that demonstrated that the VP40 PPxY 
motifs of both EBOV and MARV functioned in a 
manner similar to that described earlier for both 
retroviral and rhabdoviral (55,89,99-101) PPxY 
motifs to recruit host interactors and ESCRT to 
facilitate egress (Fig. 2A) 
(44,54,58,60,91,96,97,102).  Most of the early 
work on the filovirus VP40 PPxY motif was 
centered around its role in hijacking Nedd4 and 
ultimately the ESCRT complex to facilitate 
budding. More recent developments were 
based on utilization of a strategy involving 
screening of a specially prepared array 
composed of a complete set of bacterially-
expressed and purified human WW-domains 
with either WT or PPxY-mutant peptides from 
EBOV or MARV VP40 to identify novel WW-
domain interactors that may regulate filovirus 
budding (41,42,103). Interestingly, the authors 
found that there was an unprecedented degree 
of specificity, in that the filoviral WT PPxY motifs 
bound to only a select number of host WW-
domains (41,42,103). In addition to the 
expected WW-domain interactors like Nedd4 
and Rsp5, the newly identified VP40 hits from 
this screen included HECT family E3 ubiquitin 
ligases ITCH (AIP4) and WWP1 (41,42) 
previously identified as Gag interactors. In 
addition, BCL2 Associated Athanogene 3 
(BAG3); a WW-domain bearing member of the 
BAG family of molecular co-chaperone proteins 
involved in regulating protein homeostasis and 
cell survival through chaperone-assisted 
selective autophagy (CASA), was identified as a 
novel VP40 interactor (103).  
     Han and colleagues confirmed that EBOV 
VP40 interacted with ITCH in a PPxY/WW-
domain dependent manner as determined by 
co-immunoprecipitation of full-length proteins, 
and that the enzymatically active form of ITCH 
was required to mono-ubiquitinate EBOV VP40 
leading to enhanced egress of VP40 VLPs (41). 
In addition, the authors used both siRNA 
knockdown/rescue assays and ITCH knockout 
cells to demonstrate further the biological 
importance of ITCH for VP40 budding in this 
VLP system and for egress of recombinant VSV 
engineered to express the PPxY L-domain of 

EBOV VP40 (41,97). These data demonstrated 
that EBOV VP40 likely recruits host E3 ligase 
ITCH via the PPxY/WW-domain modular 
interaction to promote efficient egress of EBOV 
VLPs and VSV-EBOV recombinant viruses, and 
although yet to be proven, imply that a similar 
modular recruitment of ITCH may occur during 
authentic EBOV infection.  
     Similar findings were reported by Han and 
colleagues for E3 ligase WWP1 and EBOV 
VP40 (42), again demonstrating that the 
interaction between WWP1 and VP40 is 
PPxY/WW-domain dependent and that mono-
ubiquitination of VP40 by enzymatically active 
WWP1 led to enhanced egress of VP40 VLPs 
(42). Not surprisingly, both ITCH and WWP1 
interact with a plethora of cellular proteins to 
regulate multiple pathways and networks in 
mammalian cells (37). For example, ITCH plays 
a key role in regulating lymphocyte activation 
and differentiation; key processes in immune 
regulation and inflammatory signaling (104). 
Likewise, WWP1 functions in protein signaling 
and trafficking-related to TGFβ and EGF 
signaling, as well as apoptosis and neurological 
diseases (37). While recruitment or hijacking of 
E3 ligases such as Nedd4, ITCH, and WWP1 
may facilitate egress and modulate the 
pathogenesis of infectious EBOV, the potential 
effects of these modular interactions on normal 
host protein function remains unclear. In 
addition, whether the ability of filovirus VP40 
and other PPxY containing viral proteins to 
interact with a wide array of WW-domain 
interactors is linked to the expression levels of 
these ligases in various cell types and reflects 
the cellular tropism of the virus, or is simply a 
mechanism of built-in redundancy used by the 
virus, remains to be determined.  
     Using the previously mentioned human WW-
domain array, Liang and colleagues identified 
host BAG3 as a novel WW-domain interactor 
with the PPxY motifs of both EBOV and MARV 
VP40 (103). BAG3 is a stress-induced protein 
that regulates cellular protein homeostasis and 
cell survival through the CASA pathway 
(11,105). The authors confirmed the PPxY/WW-
domain dependent interaction between BAG3 
and both EBOV and MARV VP40, and 
intriguingly, demonstrated that expression of 
BAG3 negatively regulated budding of both 
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EBOV and MARV VP40 VLPs, as well as egress 
of infectious VSV-EBOV recombinants (103). 
This finding was novel since all previously 
identified host WW-domain interactors with 
VP40 positively regulated VLP and/or virus 
egress (103). The authors speculated that 
BAG3 and CASA may function as a host 
defense mechanism, whereby BAG3 
recognizes and interacts with the viral PPxY 
motifs, thereby dampening virus egress by 
interfering with the budding function of viral 
PPxY-containing matrix proteins. Recently, 
BAG3 and the CASA machinery were reported 
to regulate both the synthesis and degradation 
of filamin; a key actin-crosslinking protein at the 
plasma membrane that modulates cell adhesion 
and migration (106-110). BAG3 is also involved 
in regulating the disassembly of the actin-based 
contractile ring during cytokinesis (cell-cell 
separation) (111,112). Cytokinesis is 
topologically equivalent to a virion budding from 
the cell surface (virus-cell separation), and both 
processes involve some of the same host 
pathways (113-121). One possibility is that 
BAG3 and the CASA machinery regulate actin-
based dynamics, stress and membrane tension 
necessary for efficient pinching off of VLPs 
and/or viruses (122,123). Liang and colleagues 
used confocal microscopy to show that VP40 
appeared to be sequestered away from the 
plasma membrane and accumulated in 
cytoplasmic aggregates in cells expressing WT 
BAG3, which correlated with a decreased 
efficiency of VLP egress (103). Although more 
studies are needed, it will also be of interest to 
investigate the potential interplay and binding 
competition between WW-domain bearing host 
proteins that positively regulate virus egress 
(e.g. ITCH) vs. those that negatively regulate 
virus egress (e.g. BAG3) as a means to better 
understand the biological impact of these 
dueling modular interactions. 
 
II. Modular Interactions and Virus 
Entry/Replication 
A. Adenoviruses: 
     Although most PPxY motifs encoded by RNA 
viruses hijack HECT-family, WW-domain 
interactors to promote virion egress, the 
adenovirus PPxY/host interaction was unique in 
that it was one of the first discoveries of a viral 

PPxY motif functioning in virus entry rather than 
virus egress. Indeed, both the adenoviral 
membrane lytic internal capsid protein VI (PVI) 
and the capsid penton base protein possess 
PPxY motifs that play a role in Adenovirus (AdV) 
entry. AdV is a non-enveloped, double-stranded 
DNA virus, which enters cells by receptor-
mediated endocytosis and utilizes the penton 
base protein for internalization, as well as 
escape from endosomes. In 2002, Galinier and 
colleagues screened a human lung expression 
library for host proteins that may influence 
adenoviral entry by interacting with the two 
PPxY motifs in the N-terminal region of the 
penton base polypeptide chain (40). They found 
that the first PPxY motif was critical for 
mediating interactions with WW-domain E3 
ligases WWP1, WWP2 (also known as AIP2), 
and ITCH (40), providing the first demonstration 
that a non-enveloped DNA virus employed a 
PPxY motif to interact with host HECT-family 
ligases. 
 AdV requires exposure of the internal PVI 
capsid protein to breach the endosomal 
membrane and escape into the cytosol to 
complete the internalization step. Wodrich and 
colleagues identified a functional PPxY motif 
within PVI that recruited both Nedd4.1 and 
Nedd4.2 leading to ubiquitination of PVI (124). 
They went on to show that the PPxY motif within 
PVI was required for microtubule-dependent 
intracellular trafficking to the nucleus, and that 
PPxY mutants were able to escape the 
endosome, but were defective in trafficking to 
the nucleus (Fig. 2B) (124). Later findings by the 
same group suggested that recruitment of 
Nedd4 by the PPxY motif of PVI was a strategy 
used by the virus to divert the host E3 ubiquitin 
ligase from its physiological function in 
regulating autophagy, thus allowing the virus to 
evade the host autophagic response (125,126). 
Indeed, the authors observed that the WT PPxY 
motif of PVI prevented efficient formation of 
autolysosomes, and they speculated that the 
WT virus may interfere with elongation of the 
autophagosomal membrane, thereby 
preventing autophagosome formation 
(125,126). In sum, these novel findings were the 
first to demonstrate that the modular interaction 
between the adenoviral PPxY motif and the 
WW-domain(s) of Nedd4 not only promoted 
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efficient viral entry and trafficking, but also 
represented a unique strategy for the virus to 
reduce antigenic presentation and evade the 
host immune response (125,126). 
 
B. Herpesviruses:  
1. Epstein Barr virus (EBV; human 
gammaherpesvirus 4)  
     Epstein-Barr virus is a human herpesvirus 
that infects lymphoid and epithelial cells to 
cause infectious mononucleosis. EBV 
establishes a lifelong latent state in the absence 
of replicative gene expression in B-cells, and the 
viral Latent Membrane Proteins (LMP1, 2A, and 
2B) are expressed in latency to antagonize the 
normal process of B-lymphocyte activation. 
Indeed, LMP2A plays a key role in enhancing 
the development of tumors and the 
transformation potential of cells. LMP2A, which 
helps maintain EBV latency, contains two highly 
conserved PPPPY motifs that were first 
identified by Longnecker and colleagues and 
were shown to interact with WW-domains (127-
129). Two groups went on to show that the 
PPxY motifs of LMP2A recruited host proteins 
ITCH (AIP4), WWP2, Nedd4L and/or Nedd4 via 
one or more of their modular WW-domains 
(46,127). Indeed, Winberg and colleagues 
found that these E3 ubiquitin ligases formed 
PPxY/WW-domain dependent complexes with 
LMP2A in EBV infected B-cells, which they 
suggested may lead to ubiquitination of Lyn and 
Syk tyrosine kinases to ultimately block B-cell 
signaling (46). In support, Ikeda and colleagues 
demonstrated a reduction in the normal cellular 
levels of Lyn and LMP2A, suggesting that 
recruitment of Nedd4-like ubiquitin ligases via 
the viral PPxY motifs resulted in ubiquitin-
mediated degradation of Lyn and LMP2A, thus 
modulating B-cell signal transduction (127).  
     More recently, Lan and colleagues described 
an intriguing interaction between the PPxY 
motifs of EBV LMP2A and a host WW-domain 
containing oxidoreductase (WOX1), that 
functions, in part, as a tumor suppressor (130). 
They report that WOX1 is important for cancer-
promoting effects triggered by LMP2A, and 
specifically that the PPxY/WW-domain 
interactions between LMP2A and WOX1 were 
important for induction of matrix 
metalloproteinase 9 (MMP9). These findings 

suggest that the modular interactions between 
the PPxY motifs of EBV LMP2A and the WW-
domain on host WOX1 may be crucial for 
invasiveness and cancer progression 
associated with EBV infection (130). 
 
2. Roseoloviruses (human 
betaherpesviruses; HHV-6A, HHV-6B and 
HHV-7) 
     Roseoloviruses, also known as human 
herpesvirus types 6A, 6B and 7 (HHV-6A, HHV-
6B and HHV-7), have been linked to several 
neurological diseases, including encephalitis, 
epilepsy, and multiple sclerosis (MS). The 
roseoloviral protein U24 is a C-tail-anchored 
membrane protein shown to affect recycling and 
endocytosis of cell surface receptors (131,132). 
In addition, U24 function may be linked to MS, 
as it has been found to mimic the interaction of 
Myelin Basic Protein’s (MBP) with its binding 
partner Fyn (133,134). The N-terminal region of 
U24 encoded by HHV-6A and HHV-7 contains a 
PPxY motif that was shown to interact with 
HECT-family E3 ligases SMURF2 and Nedd4; 
albeit more strongly to WW-domain #3 of Nedd4 
(135). Importantly, since sodium channels have 
been found to be associated with MS lesions, 
investigators speculated that U24 may interfere 
with the endosomal recycling of sodium 
channels known to be regulated by Nedd4. 
Although still speculative, results from Sang and 
colleagues suggest that the PPxY motif of U24 
and its strong interaction with WW-domain #3 of 
Nedd4 may play role in MS or other related 
demyelinating diseases (133).  
 
C. Tombusviruses: 
1. Tomato Bushy Stunt virus (TBSV) 
     Tomato Bushy Stunt virus is an RNA virus 
with a small positive-stranded RNA genome that 
infects plants, and the virus encodes a handful 
of viral proteins that are unable to support viral 
replication without contributions from host 
factors. Plants have developed innate and 
adaptive immune pathways, including cell-
intrinsic restriction factors (CIRFs), that limit 
plant virus replication and disease (136). 
Indeed, the yeast E3 ubiquitin ligase Rsp5 was 
identified as a CIRF, as its WW-domains 
interact with the RNA binding sites on two TBSV 
replication proteins (p33 and p92pol), thus 
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blocking their ability to function in viral 
replication (38,137,138). Interestingly, the ability 
to block viral replication was independent of the 
catalytic HECT domain and was instead 
dependent on binding of the viral polymerase 
proteins by the WW-domain of Rsp5 itself (38). 
Although a canonical PPxY motif is not present 
in either p33 or p92pol, these two viral proteins 
do share structural similarity that likely renders 
them capable of interacting with the WW-
domains of Rsp5. The Rsp5 WW-domains not 
only interfere with the formation and assembly 
of the viral RNA replicase, but also appear to 
inhibit subversion of additional host proteins 
required by the vial replicase to complete viral 
replication (138). In sum, these studies not only 
have identified host WW-domain interactors that 
can regulate replication of TBSV and perhaps 
other related plant viruses, but also have laid the 
groundwork for future studies to determine 
whether these modular interactions and WW-
domains themselves could serve as the basis 
for new antiviral strategies.  
 
III. Modular Interactions and Innate Immunity  
A. Orthomyxoviruses: 
1. Influenza A and B viruses. 
     Influenza viruses do not encode any 
functional PPxY motifs; however, a recent report 
described the indirect effect of a host 
PPxY/WW-domain modular interaction on the 
innate immune response and susceptibility to 
influenza virus infection (139). Interferon (IFN)-
induced transmembrane protein 3 (IFITM3) is a 
PPxY-containing innate immune protein that 
restricts influenza virus infection, and levels of 
IFITM3 are regulated by ubiquitination following 
binding of IFITM3 to the  WW-domains of E3 
ligase Nedd4 (139). Chesarino and colleagues 
demonstrated that endogenous Nedd4 and 
IFITM3 colocalized with lysosomal markers in 
cells and that Nedd4-dependent regulation of 
IFITM3 levels affected the susceptibility of both 
cells and mice to infection with influenza A and 
B viruses (139). For example, knockdown of 
endogenous Nedd4 resulted in an increase in 
both IFITM3 levels and in cellular resistance to 
influenza virus infection and the PPxY motif of 
IFITM3 was required for Nedd4-mediated 
ubiquitination (139). Overall, these findings 
suggest that short term pharmacological 

inhibition of Nedd4’s modular interaction with 
IFITM3 could represent a novel therapeutic 
strategy to prevent infection by influenza viruses 
and perhaps other IFITM3-sensitive viruses as 
well. 
 
B. Retroviruses and Filoviruses: 
2. HIV-1 and Ebola virus. 
     Cellular innate immune responses have 
been identified that target the budding process 
of invading viral pathogens by affecting specific 
host proteins associated with virus egress, such 
as Nedd4 and ESCRT components. For 
example, interferon induced ubiquitin-like 
protein 15 (ISG15) was shown to interfere with 
release of HIV-1 by inhibiting host-mediated 
ubiquitination of Gag and Tsg101 (140). Indeed, 
follow-up studies on EBOV VP40-mediated 
budding demonstrated that ISG15 inhibited the 
ubiquitin ligase activity of Nedd4, which was 
required for efficient PPxY-mediated egress of 
EBOV VP40 VLPs (63,141,142). These studies 
were impactful, in that they identified an indirect 
mechanism of host inhibition of L-domain-
mediated virus egress. Subsequent and elegant 
studies by the Leis group expanded on the 
ESCRT-associated antiviral role of innate 
immune protein ISG15 by showing that ISG15 
interacted with and/or disrupted the activity of 
additional ESCRT-related proteins including 
CHMP5, LIP5, and Vps4 (143-145). Thus, 
ISG15 appears to be a key component of the 
host innate immune response that interferes 
with the assembly and budding processes of a 
broad array of viruses at multiple levels 
(146,147).      
  
IV. Modular Interactions and Host-Oriented 
Antiviral Therapeutics 
A. Filoviruses and Other PPxY-Containing 
Viruses. 
     The viral PPxY/host WW-domain interface 
represents an attractive target for the 
development of small molecule or peptide-
based inhibitors that are often referred to as 
“host-oriented” therapeutics since they are 
designed to target a virus-host interface rather 
than a viral protein or viral function only. For 
some of the viruses discussed above, these 
therapeutics would be predicted to inhibit 
efficient virus egress and spread by preventing 
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the viral matrix protein from recruiting WW-
domain partners and subsequent egress 
machinery (Fig. 3). Potential advantages of this 
host-oriented strategy include the widespread 
conservation of the viral PPxY, as well as other 
L-domain motifs in a wide array of viral matrix 
proteins, such that an effective therapeutic may 
have broad-spectrum activity against numerous 
viral pathogens. In addition, host-oriented 
inhibitors may diminish the emergence of drug-
resistant viral mutations, particularly for RNA 
viruses, and may lead to a paradigm shift in the 
search for better antiviral drugs. Since these 
PPxY/WW-domain interactions represent a 
common mechanism for mediating egress for a 
wide range of RNA viruses, a combination of 
inhibitors targeting early stages of the virus 
lifecycle along with those targeting this late step 
in budding may represent a highly effective 
therapeutic cocktail. Considering the small size 
of functionally folded WW domains (less than 38 
amino acids) and the rigid structure of PPxY L-
domains, which form polyproline type II helices, 
engineering of their respective polypeptides and 
peptides into expression vectors may serve as 
competitors of L-domain/E3 ligase interactions. 
Indeed, a successful interference of Rous 
Sarcoma Virus budding from cells by cis 
overexpression of a WW domain support this 
avenue of potential interventions to harness 
retro- and filo-viremias in vivo (76).  
     Several recent studies support the feasibility 
of small molecule inhibition of PPxY/WW-
domain interactions as an antiviral strategy for 
PPxY-containing RNA viruses. First, an in silico 
strategy was employed by Han et al. (148) to 
identify existing small molecule compounds 
from a ZINC database that could potentially 
block the interaction between the PPxY L-
domain motif of EBOV and the modular WW-
domain of host protein Nedd4 (149,150). 
Functional activity of the best candidate 
inhibitors was assessed by using filovirus VLP 
budding assays, as well as infectious virus 
budding assays employing VSV-WT, VSV 
recombinants expressing EBOV L-domain 
motifs, and rabies virus, all of which contain 
PPxY motifs. The authors showed that the most 
potent compounds (e.g. compound 5) had 
broad-spectrum anti-budding activity against 
PPxY-containing matrix proteins from 

filoviruses, rhabdoviruses, and arenaviruses 
with little to no cytotoxicity at the inhibitory 
concentrations used (148). Importantly, the 
candidate inhibitors significantly reduced the 
budding of live infectious VSV and rabies virus 
in cell culture compared to that observed in the 
presence of structurally related negative 
controls.  
  
     To gain a better understanding of how the 
viral PPxY motif fits into the WW-domain pocket 
of Nedd4, and how inhibitors like compound 5 
may antagonize this virus-host interaction, 
modeling and docking analyses were performed 
using the NMR structure of human Nedd4-WW3 
domain and the Ebola VP40-derived PPxY 
peptide (PDB: 2KQ0), with and without 
compound 5 (Fig. 4). The peptide-binding site in 
the WW3 domain contains two sub-pockets. 
This study revealed that the second proline 
residue from the PPxY motif in the EBOV VP40 
peptide occupies the first sub-pocket, 
surrounded by WW3 residues Asn24, Phe28, 
Thr37, and Trp39 (Fig. 4A), and that the tyrosine 
residue from the EBOV VP40 PPxY motif 
occupies the second sub-pocket, surrounded by 
Arg20, Ile30, His32, and Lys35 (Fig. 4A). 
Besides hydrophobic interactions, the peptide 
also forms one hydrogen bond and one salt 
bridge with WW3 residues Asn24 and Arg20, 
respectively (Fig. 4A).  The docked 
conformation of compound 5 showed 
reasonable shape complementarity to this 
binding site, with its quinoxaline bicyclic moiety 
occupying the first sub-pocket, its phenyl ring 
occupying the second pocket, and its urea 
moiety forming hydrogen bonding interactions 
with Arg20 in the WW3 domain (Fig. 4B). Thus, 
compound 5 could directly compete with the 
EBOV VP40 peptide in binding to the human 
Nedd4-WW3 domain (Fig. 4C), which would 
correlate with its anti-budding activity observed 
by Han et al. (148). While the authors reported 
little to no cytotoxicity of compound 5 in these in 
vitro assays, additional experiments will be 
essential to assess any effects of the inhibitor 
on the normal cellular functions of Nedd4 and/or 
other related E3 ligases.  
     In a follow-up report by Loughran et al. (151), 
the authors described the preparation of a 
series of quinoxaline-2-mercapto-acetyl-urea 
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analogs of compound 5, which were evaluated 
for their ability to inhibit filoviral VLP and virus 
egress using assays described above. The new 
analogs inhibited both VP40 VLP and live 
recombinant VSV virus budding in the low 
nanomolar range, with little to no cytotoxicity, 
good human microsome stability, and no 
inhibition of P450 3A4 at 33µM concentration 
(151). The efficacy of lead candidate inhibitors 
to block egress of authentic hemorrhagic fever 
viruses in vitro and in vivo remains to be 
determined. Identification of inhibitors that block 
such interactions may be useful for a wide array 
of PPxY containing viruses that hijack or recruit 
WW-domain containing E3 ligases during the 
late step of budding. Such inhibitors may be 
particularly useful for the treatment of Ebola 
virus disease, as EBOV was shown recently to 
cross the blood-brain barrier and re-emerge 
months later in the CNS and eye, as well as in 
other immunologically privileged sites that are 
inaccessible to antibody therapy (152-165).  
     While progress to date on the identification 
and development of host-oriented, small 
molecule therapeutics that target virus-host 
interactions is still in the early stages, these 
studies indicate that this new therapeutic 
strategy is feasible in vitro and worth pursuing in 
vivo. However, a number of challenges and 
hurdles remain, one of which includes the 
potential for these therapeutics to disrupt key 
cellular protein WW-domain interactions leading 
to possible side effects from these compounds. 
Indeed, the precise target(s) of these 
compounds remains to be determined, as does 
their possible effects on normal host protein 
functions. Nevertheless, the demonstration that 
WW domains are potentially druggable (30), 
and the high specificity of viral L domain 
interactions with their cognate protein domains 
support further investigations into this approach 
to control egress of RNA viruses like EBOV.  In 
support of strategic shifts in drug discovery 
efforts, recent successes have been achieved 
with the use of stapled peptides (166-168) and 
cell-penetrating cyclic peptides (169), which are 
designed to target specific intracellular protein-
protein interactions. Indeed, Zhang et al. 
demonstrated that stapled peptides targeting 
dimer formation of the HIV-1 capsid protein 
showed potent antiviral activity against a broad 

array of viral isolates, including strains that were 
resistant to reverse transcriptase and protease 
inhibitors (168). In sum, the continued pursuit of 
fundamental and new insights into the virus-host 
interface will ultimately lead to the development 
of novel antiviral targets and strategies. 
 
V. Conclusions and Outlook     
     While studies described above highlight the 
key roles that host WW-domain interactors play 
in regulating various stages of RNA and DNA 
virus lifecycles, a number of questions remain. 
For example, are there additional cis- and/or 
trans-acting factors that influence or regulate 
the selective binding of the viral PPxY motif to a 
particular host WW-domain during a virus 
infection? Do host PPxY-bearing proteins that 
interact with cellular WW-domains compete with 
viral PPxY motif containing proteins in infected 
cells? With more than 1,200 PPxY motifs 
represented in over 1,000 human proteins, and 
with the number of predicted, functional human 
WW-domains being more than 90, the potential 
repertoire of WW domain-PPxY complexes in 
cells seems vast. Therefore, it will be important 
to understand the spatial, temporal, topological 
and structural levels of specificity that make 
signaling by PPxY L-domains and host proteins 
so discrete and biologically critical for the life 
cycles of many different viruses. As such, 
studies of highly conserved PPxY motifs and 
their shared interactions with modular WW-
domains of host interactors will likely provide 
new and valuable insights into the mechanisms 
of viral budding and transmission, entry, 
immune evasion, and genome replication for a 
wide array of viral pathogens.  
     If indeed antivirals targeting PPxY/WW-
domain interactions are to be pursued and 
developed, it will be critical to assess the 
potential cytotoxic effects of such antiviral 
compounds, and determine the specificity for 
these compounds to interfere with virus-host 
PPxY/WW-domain interactions, rather than with 
host-host PPxY/WW-domain interactions. 
Although the treatment regimen for such an 
inhibitor would likely be brief when used to 
target acute viral infections, the potential side 
effects on normal host protein function would 
still need to be assessed. In addition, the wide 
array of host WW-domains and their potential to 
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be affected by these host-oriented therapeutics 
must be taken into consideration when 
developing these compounds. To date, there 
does appear to be specificity in PPxY binding to 
select WW-domains, and a better 
understanding of the nature of this specificity will 
be crucial to ensure that any antiviral inhibitor 
will exhibit the same specificity for its target.   
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Table 1. Summary of virus-host interactions and effects on RNA and DNA viruses. 
*all proteins listed are viral proteins, except for IFITM3 
#  p92pol and p33 do not contain canonical late domain motifs  
 
 
 
 
 
 
 
 

Virus Family Virus Late Domain 
Containing Viral 
Protein*# 

WW-domain 
Bearing Host 
Interactor 

Effect on viral 
lifecycle 
stage 

Retroviruses HIV-1 Gag Nedd4, 
Nedd4.2/Nedd4L, 
Rsp5  

Enhancement 
of budding 

 RSV Gag LDI-1, LDI-2, 
Nedd4 

Enhancement 
of budding 

 HTLV-1 Gag Nedd4, 
ITCH/AIP4, 
WWP1, HECW2 

Enhancement 
of budding 

 MLV Gag Nedd4, WWP1, 
WWP2, 
ITCH/AIP4, ART 
proteins 

Enhancement 
of budding 

Filoviruses EBOV VP40 Nedd4, Rsp5, 
ITCH, WWP1 

Enhancement 
of budding 

   BAG3 Inhibition of 
budding 

 MARV VP40 Nedd4 Enhancement 
of budding 

   BAG3 Inhibition of 
budding 

Herpesviruses EBV LMP2A Nedd4, 
Nedd4.2/Nedd4L 
WWP2, 
ITCH/AIP4 

Viral latency 

 EBV LMP2A WOX1 Cancer 
progression 

 HHV 
(Roseolovirus) 

U24 Nedd4.1, 
Nedd4.2/Nedd4L, 
SMURF-2  

Neurologic 
disease 
progression 

Adenoviruses AdV PVI WWP1, WWP2, 
AIP4/ITCH, 
Nedd4.1, 
Nedd4.2/Nedd4L 

Viral entry  

Tombusviruses TBSV p92pol, p33# Rsp5p Viral 
replication 

Orthomyxoviruses Influenza IFITM3 (cellular)  Nedd4 Immune 
modulation 
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Fig. 1. Key modular PPxY/WW-domain interactions and outcomes for the Retroviruses, Filoviruses, 
and Adenoviruses. 
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Fig. 2. A) Position and sequence of PPxY motifs in key viral proteins. B) Representative examples of 
virus-host PPxY/WW-domain interaction functioning during virus exit (left; EBOV VP40) and virus entry 
(right; AdV PVI).  
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Fig. 3. Schematic diagram of filovirus budding in the absence (Left) or presence (Right) of host-oriented 
PPxY/WW-domain interaction inhibitors.  
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Fig. 4.  NMR structure of human Nedd4-WW3 domain in complex with: A) the Ebola VP40 PPxY 
peptide, B) the docked pose of compound 5, and C) both the Ebola VP40 PPxY peptide and compound 
5. 
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