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In recent years, advances in structural biology, integrative

modelling, and simulation approaches have allowed us to gain

unprecedented insights into viral structure and dynamics. In

this article we survey recent studies utilizing this wealth of

structural information to build computational models of partial

or complete viruses and to elucidate mechanisms of viral

function. Additionally, the close interplay of viral pathogens

with host factors — such as cellular and intracellular

membranes, receptors, antibodies, and other host proteins —

makes accurate models of viral interactions and dynamics

essential. As viruses continue to pose severe challenges in

prevention and treatment, enhancing our mechanistic

understanding of viral infection is vital to enable the

development of novel therapeutic strategies.
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Introduction
Viral diseases continue to impose a severe burden on

human health and agricultural production [1], and pose

special challenges for the development of effective thera-

pies [2].Viral pathogensoccur ina variety ofcomplexityand

size. Simple virions typically contain a genome that is only a

few kilobases in length enclosed in a homopolymeric

protein capsid with dimensions of a few tens of nanometers.

Complex, enveloped viruses can contain a variety of viral

proteins, lipid bilayers, internal capsids, potentially seg-

mented, single-stranded or double-stranded RNA and

DNA genomes of over a megabase in length, and may

reach hundreds of nanometers in diameter. Gaining an

understanding of the molecular mechanisms underpinning
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viral infections provides us with crucial information to

advance our therapeutic toolkit against this important class

of pathogens. Advances in cryo-electron microscopy

(cryoEM) have enabled us to observe viral structures in

unprecedented detail [3], and in combination with X-ray

crystallography of individual viral components, allow for

(near)-atomic resolution reconstruction. These structures

often now also serve as the starting point for computational

modelling of viral dynamics. The most widely used tech-

nique to this end is molecular dynamics (MD) simulation,

based on classical, non-polarizable force fields. As of today,

describing full viruses (and their respective complexes with

therapeutics, antibodies, or host cell components) in atom-

istic detail is computationally challenging but possible,

thanks in particular to the development of specialized

hardware such as GPUs and custom-built chips [4–6], in

combination with improved MD parallelization algorithms

[7]. Moreover, simplified coarse-grained (CG) models are

now routinely used to reduce the number of interactions

that need to be calculated while retaining essential struc-

tural and dynamic characteristics [8,9]. Thus, simulations

have been used to elucidate a number of viral phenomena

including the assembly of capsids, the permeability of viral

shells, or the interaction of viral proteins with lipid bilayer

envelopes and endocytosis. In this article we aim to high-

light recent advances in computational structural biology of

viral systems and summarize their key findings with regard

to both virus function and antiviral therapy.

Capsid stability and permeability
The first atomic-resolution simulation of a complete virus

was of the �17 nm diameter satellite tobacco mosaic virus

(STMV) [10]. Over 10 ns, the icosahedral capsid was stable

only in the presence of an artificially modelled RNA

molecule. This contrasted with other capsids such as that

of poliovirus [11], indicating that the dependence of capsid

nucleation upon genomic material may vary from virus to

virus. A dense internal chloride layer was reported for

simulations of the �20 nm diameter porcine circovirus type

2 (PCV2) [12] and �27 nm diameter MS2 bacteriophage

[13], which may mimic the genome [14]. In fact, the

functional role of capsid ion distributions and permeability

has been a primary focus of numerous studies. Ions may be

‘sensed’ by viral capsids to transition along the life cycle to,

for example, trigger genome release. 1 ms atomistic simula-

tions of the �17 nm diameter satellite tobacco necrosis

virus (STNV) revealed capsid opening upon the loss of

structural calcium ions, representative of the plant cyto-

plasmic environment [14], while a multiscale study of the

�30 nm diameter Triatoma Virus (TrV) indicated that the

opening of uni-directional proton pores within the capsid

occur in the presence of high chloride concentrations,
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concomitant with alkalinization inside insect cells [15].

More generally, it has been noted that viral capsids can

act as semipermeable layers with distinct selectivity. A

1.2 ms simulation of an HIV-1 lattice system comprising

�64 million atoms revealed a permeation rate of chlo-

ride ions twice that of sodium, which was hypothesized

to be important for nucleotide translocation [16�]. Con-

versely, in a 1.1 ms simulation of the �36 nm diameter

hepatitis B virus (HBV) sodium permeated around five

times faster than chloride via highly acidic triangular

pores, leading to the concentration of sodium ions on

the interior surface, speculated to be important in

extrusion of the basic C-terminal domain capsid protein

tails for cell signaling [17�]. Meanwhile, in simulations

of poliovirus [18] or PCV2 [19] no significant ion

exchange was observed. Bidirectional translocation of

water molecules was typically observed in all of these

simulations, but as pointed out by Hadden et al. [17�],
the measured exchange rates span several orders of

magnitude that do not correlate with capsid morphol-

ogy, highlighting the mechanistic diversity of viral

capsids.
Figure 1

The HIV-1 capsid recruits kinesin for trafficking through the cytoplasm towa

among the capsid, kinesin and tubulin have been established using a comb

Figure courtesy of Juan R Perilla.
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Simulations meet experiment in defining novel
viral architectures and complexes
With ongoing advances in structural biology, myriad data

are frequently obtained for different conformational

states or assemblies, and at varying resolutions. In such

cases, MD can help integrate them into unified models or

ensembles, as in, for example, prediction of the structure

of cylindrical Ebola virus lattice filaments [20] or assess-

ment of capsid mechanostability [21,22] MD flexible

fitting (MDFF) was developed as a means to dynamically

fit atomic structures into experimental density maps,

enabling elucidation of several virus capsid structures

[23] including mature HIV-1 tubular lattice assemblies

[24]. Subsequently, biochemical and biophysical studies

were combined with spontaneous binding simulations

spanning tens of microseconds for different higher-order

HIV-1 lattice assemblies, indicating how restriction factor

MxB [25] recognizes the capsid at regions where three

capsid hexamers meet to inhibit HIV infection [26], while

a 1.25 ms simulation of a pentamer-of-hexamers bound to

the antiviral PF-3450074 [27] revealed that the drug may

modulate functional allosteric pathways within the capsid
Current Opinion in Structural Biology

rds the cellular nucleus. The molecular details of the interactions

ination of atomistic simulations and experimental methods [29�].
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assemblies [28]. A recent joint biochemical and theoreti-

cal effort also showed how kinesin-1 adaptor protein

FEZ1 binds to the positively charged central pore of

HIV-1 capsid hexamers, with spontaneous translocation

of FEZ1 poly-glutamate stretches into the pore observed

during 2 ms atomistic simulations, thereby explaining

how the virus is targeted for trafficking to the nucleus

via the microtubule network [29�] (Figure 1).

Simulating viral plasticity and assembly
In recent years, MD simulations have proven useful in

elucidating conformational rearrangements  in viral sys-

tems, ranging from subtle motions associated with

infection and drug resistance, to capsid assembly, mat-

uration, and endocytosis [30]. Structural fluctuations

including ‘surface waves’ and long-range collective

dynamics were observed in simulations of the complete

HIV-1 capsid, and proposed to play allosteric functions

in viral infection [16�]. Both local motions and global

asymmetric distortions were noted for the HBV capsid,

which may be important during maturation or viral

transport through nuclear pores [17�]. These simula-

tions were also mined to explain the mechanistic basis

for resistance to small-molecule antivirals in naturally

occurring HBV mutants [31] while follow-up simula-

tions of the HBV shell indicated how the small-mole-

cule drug HAP1 may misdirect assembly by modifying

its global quaternary morphology  [27].
Figure 2

Canonical Maturation

Accelerated Maturation w/
Capsid Inhibitors

CIs of HIV-1 reduce infectivity by affecting pathways during both assembly 

to study HIV-1 capsid assembly, based on a Ca-resolution representation o

protein/protein interfaces identified from experimental structures favored by

metastable trimer-of-dimer (TOD) oligomers as key nucleating structures, fo

effect of CIs which bind to and stabilize such oligomers [43�]. The resultant 

(green), pentamers (red), and the growing edge of the capsid (blue) [43�]. Fi
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Immature retrovirus lattice structures, whose assembly

are essential during the early stages of the replication

cycle, have also been the focus of numerous computa-

tional studies. In the first simulation of an immature

HIV-1 capsid, a multiscale approach was taken to study

the virion envelope and Gag polypeptide, which con-

tains subdomains corresponding to the matrix (MA),

capsid (CA), and nucleocapsid (NC) proteins, as well

as other smaller fragments including spacer (SP) pep-

tides, that are subsequently cleaved during maturation.

The highly conserved CA monomer structure is com-

posed of an N-terminal domain (NTD) and C-terminal

domain (CTD), both of which are predominantly a-
helical, separated by a flexible linker. The simulations

revealed key interactions responsible for maintaining

hexagonal symmetry, and suggested how Gag mutants

distort the CA domain bundle structure and hence lattice

assembly [9]. Extensive atomistic simulations of HIV-1

CTD-SP1 hexamers indicated that the bundle is stabi-

lized by the binding of inositol phosphates at its hex-

americ center [32], and that it exists in a dynamic helix-

coil equilibrium that may be shifted towards the helical

state by certain drugs or mutations to inhibit maturation

[33]. Simulations based on an integrative model of the

immature Rous sarcoma virus (RSV) lattice further

revealed that the Gag lattice requires components

upstream and downstream of the NTD and CTD CA

layers for stability [34] including a poorly conserved

flexible loop (FL) in the CA NTD [35].
Accelerated
Uncoating

Regulated Uncoating
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in viral maturation and uncoating. An ‘ultra-CG’ model was developed

f CA dimers restrained strategically by elastic networks, with native

 additional attractive interactions [42]. This led to the identification of

r which an auxiliary elastic network was implemented to study the

CA assemblies observed during simulations included hexamers

gure courtesy of Prof. Gregory A. Voth.
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Simulating the spontaneous assembly of complete viral

shells represents a major ongoing challenge [36].

Highly simplified models have continued to improve,

such that many can broadly reproduce assembly/matu-

ration intermediates and final capsid structures, for

example, in which constituent proteins [37] or cap-

someres [38] are represented by single particles, or

by sets of soft spheres fused together into rigid struc-

tures [39] as well as simplified representations of host

[40] or viral membranes [41]. Of particular note is work

from the Voth group in which structurally detailed but

‘ultra-CG’ models have been used to study the assem-

bly of conical HIV-1 shells. Models for CA dimers were

developed, consisting of a Ca-resolution representation

restrained strategically by elastic networks, with native

inter-CA lattice contacts promoted by additional attrac-

tive interactions [42]. Simulations were used to study

assembly and uncoating under various conditions,

incorporating the effects of CA concentration,
Figure 3

(a) (b)

(c)

Molecular simulations of the flavivirus life cycle. Multiscale models of matur

conformations, the latter having been shown to be dependent upon (i) dival

envelope were generated based on the MARTINI forcefield [8], extended fro

all-atom models of the E protein pentamers were back-mapped from the C

were introduced into atomic models of the E protein dimers to reveal how a

‘breathing’ [55�]. (c) CryoEM data provided snapshots associated with pr-an

on CG resolution models of the viral envelope revealed the pathways by wh

maturation in ADE [56�].
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molecular crowding, and conformational switching. A

reversible, multi-step process of lattice assembly was

reported, in which metastable trimer-of-dimers (TODs)

were identified as key structures nucleating mature

lattice growth [42]. The model was later extended to

study the mechanisms of capsid inhibitor (CI) drugs;

since crystallographic evidence suggests that some CIs

preferentially target an inter-CA pocket to stabilize

oligomers, the effect of CI binding was incorporated

by introducing a fixed population of TODs maintained

via an auxiliary elastic network [43�]. Simulations

revealed that CIs can accelerate hierarchical CA self-

assembly by increasing the number of accessible, ani-

sotropic assembly pathways, promoting pentameric

defects and formation of non-canonical, pleomorphic

capsids which may not be able to enclose the viral

genome. The CI-bound lattice was also found to be

inherently less stable, which may lead to inappropriate

disassembly and hence reduce infectivity (Figure 2).
(d)

i

ii
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e DENV envelope are shown for (a) compact and (b) ‘bumpy’

ent cations and (ii) point mutations. The CG simulations of the whole

m previous models developed for the smooth virion particle [45]. The

G simulations of the expanded envelope [53], while in silico mutations

mino acid substitutions modulate the temperature-dependency of viral

tibody-dependent maturation, and (d) targeted MD simulations based

ich dissociation of pr-antibody complexes may be coupled to
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Simulating viral envelopes
Efforts have also been made to simulate explicit lipid

bilayers representing the envelopes of certain viruses

[44]. The flavivirus envelope has been of particular inter-

est from a multiscale simulation perspective [45–47].

Numerous joint experimental/computational studies

have focused on the processes of membrane fusion

[48–50] and remodelling [51] in flaviviruses and related

viruses, and on strategies to block these processes [52].

CG simulations of the entire dengue (DENV) particle

enabled refinement of the envelope structure composed

of 180 envelope (E) and membrane (M) proteins arranged

with icosahedral symmetry against cryoEM maps [45].

This was used as a platform to study different aspects of

the viral life cycle. For example, the flavivirus envelope

has been shown to ‘breathe’, switching from compact to

‘bumpy’ conformations in response to an increase in

temperature, facilitating infectivity (Figure 3a-b). This

is partially reversible only in the presence of divalent

cations, and a combination of experiments and multiscale

simulations explored the molecular basis for this [53].

Targeted CG simulations of the entire envelope were

used to trigger the transition (Figure 3b). Subsequent

‘back-mapping’ of bumpy virion structures to atomic

resolution enabled detailed simulations of E protein

pentamers, revealing that divalent cations can ‘soak’

the pore at the fivefold axes to break inter-chain salt

bridges and thereby destabilize the expanded structure

(Figure 3bi). The pentameric site has also been targeted

by nanoparticles covered with ligands mimicking heparan

sulfate proteoglycans [54]. Atomistic simulations further

revealed how single amino acid substitutions associated

with different viral strains can alter interactions at the E

protein dimer interface (Figure 3bii) to modulate the

temperature threshold for DENV ‘breathing’ [55�].
Finally, CG simulations in combination with biophysical

experiments have been applied to understand the large-

scale conformational changes associated with DENV

maturation, and its dependence upon host antibody inter-

actions. Targeted MD simulations of the entire immature

DENV envelope were used to explore the transition

between intermediates identified by cryoEM

(Figure 3d), revealing how antibodies targeting the pr

fragment of the precursor membrane (prM) protein may

dislodge them to expose a key fusogenic region of the E

protein [56�]. This provides a molecular rationale of the

phenomenon of antibody dependent enhancement

(ADE), which can lead to the most severe cases of dengue

pathogenesis.

Conclusions and outlook
Continued success in elucidating previously unknown

structures of viruses, or known structures of viruses at

different stages of their life cycle, in combination with

simulations describing the transition between states and

interaction with host components, is expected to fill in

many of the current blank spots in our understanding of
Current Opinion in Structural Biology 2020, 61:146–152 
viral infections. It remains especially challenging to

model the structures of viral nucleic acids [10,11,57] as

they are rarely organized in clear geometric patterns

amenable to cryoEM or crystallographic structure deter-

mination. Computational models can make a unique

contribution to the understanding of nucleic acid cen-

tered processes such as capsid assembly [58–60], packag-

ing [61–64], budding [65], and uncoating [66]. Alternative

approaches are emerging with the advent of structure

probing by next generation sequencing methods such as

SHAPE-MaP [67] or SPLASH [68], which provide infor-

mation on local genome structure and genome-genome

interactions respectively [69�,70,71]. An enhanced com-

prehension of the precise factors necessary for viral infec-

tion and proliferation will allow us to more effectively

design therapies against this important and challenging

class of pathogens. Moreover, a mechanistic understand-

ing of viruses may assist in the rapid design of more

effective vaccines and may prove crucial in combating the

threat of global pandemic outbreaks.
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47. MacHado MR, González HC, Pantano S: MD simulations of virus
like particles with supra CG solvation affordable to desktop
computers. J Chem Theory Comput 2017, 13:5106-5116.

48. Marzinek JK, Bag N, Huber RG, Holdbrook DA, Wohland T,
Verma CS, Bond PJ: A funneled conformational landscape
governs flavivirus fusion peptide interaction with lipid
membranes. J Chem Theory Comput 2018, 14:3920-3932 http://
dx.doi.org/10.1021/acs.jctc.8b00438.

49. Guardado-Calvo P, Atkovska K, Jeffers SA, Grau N, Backovic M,
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