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ABSTRACT

The AlloSigMA 2 server provides an interactive plat-
form for exploring the allosteric signaling caused by
ligand binding and/or mutations, for analyzing the
allosteric effects of mutations and for detecting po-
tential cancer drivers and pathogenic nsSNPs. It can
also be used for searching latent allosteric sites and
for computationally designing allosteric effectors for
these sites with required agonist/antagonist activ-
ity. The server is based on the implementation of
the Structure-Based Statistical Mechanical Model of
Allostery (SBSMMA), which allows one to evaluate
the allosteric free energy as a result of the perturba-
tion at per-residue resolution. The Allosteric Signal-
ing Map (ASM) providing a comprehensive residue-
by-residue allosteric control over the protein activity
can be obtained for any structure of interest. The Al-
losteric Probing Map (APM), in turn, allows one to
perform the fragment-based-like computational de-
sign experiment aimed at finding leads for potential
allosteric effectors. The server can be instrumental
in elucidating of allosteric mechanisms and actions
of allosteric mutations, and in the efforts on design
of new elements of allosteric control. The server is
freely available at: http://allosigma.bii.a-star.edu.sg

INTRODUCTION

While the concept of allosteric drugs is a relatively new
paradigm in drug design, it already shows important
achievements and even greater promises supported by a
number of approved medicines and numerous drug candi-
dates in development and clinical trials (1–4). High speci-
ficity and selectivity of allosteric drugs allow them to be

instrumental in solving challenges of the emerging pre-
cision medicine (5–7). The important role of allosteric
mechanisms in originating latent drivers expanding the
cancer mutational landscape (8,9) and in the action of
non-synonymous single-nucleotide polymorphisms (nsS-
NPs, (10)), in general, call for their careful consideration
(11,12) in diagnostics and gene therapy applications (3,7).

There is a growing understanding that allosteric drugs
and their binding sites have physicochemical characteris-
tics and modes of binding distinct from those of orthos-
teric medicines (1,2). This prompts researchers to develop
completely new libraries of allosteric compounds, to mod-
ify algorithms for searching the allosteric sites and for find-
ing efficient allosteric site-effector pairs, and to develop
new models for formalizing the mechanisms of the al-
losteric signaling (3). To this end, the power of modern
high-throughput experimental techniques can still be com-
plemented by the computational approaches, which are, in
turn, being boosted by the recent advances in the artificial
intelligence (AI) techniques (13). Successful utilization of
the AI learning power requires, however, presence of basic
molecular models in which complexity of biomolecules and
their functions would be encoded via libraries of simple el-
ements and interactions between them, allowing the multi-
step deep and reinforcement learning.

There are several theoretical models (14–16) and cor-
responding web-applications (2,17–19), allowing to pre-
dict allosteric sites (18,20,21), communication between the
allosteric and functional sites (15,17,19), ligand–protein
interactions (22), and providing tools for the design of
allosteric modulators (23). Though the spectrum of ap-
proaches used in these models spans from the statisti-
cal considerations of sequences and structures of proteins
and ligands to simplified physical models, they all pos-
sess limited design capabilities (2,14,17–19,21–23). Our goal
here is to provide a computational framework for the ad-
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vance in design of allosteric effectors for natural and newly
found allosteric sites. To this end, we implemented our
Structure-Based Statistical Mechanical Model of Allostery
(SBSMMA), which can provide a comprehensive allosteric
control over the protein activity at per-residue resolution
(20,24,25). While in the original AlloSigMA (26) we aimed
at allowing users to analyze the causality and to estimate the
energetics of allosteric effects originated by ligand binding
and/or mutations, AlloSigMA 2 is a step forward towards
design of site-effector pairs that would provide required al-
losteric regulation. The server produces Allosteric Signaling
Maps (ASMs) and Allosteric Probing Maps (APMs) of pro-
teins that contain exhaustive data on the allosteric signaling
from every protein residue to all other residues of the pro-
tein (ASM) and on the effect of probing the structure with
a small probe that binds to three-residue segments of the
protein chain (APM), respectively. The ASMs and APMs
can be used as an input in the investigation of the effects of
individual mutations and their combinations, in the search
for the candidate allosteric sites, and for building the can-
didate effectors that provide required allosteric modulation
of protein activity.

THEORETICAL BACKGROUND, BENCHMARKING
AND IMPLEMENTATION

Structure-based statistical mechanical model of allostery

We implemented here our Structure-Based Statistical Me-
chanical Model of Allostery (SBSMMA, (18,20,24)), which
allows the calculation of allosteric free energy, or work ex-
erted on the regulated sites and residues as a result of a per-
turbation caused by ligand binding and/or mutations.

The energy function of a protein with perturbations rep-
resented by Cα harmonic model for approximating the
global dynamics of the protein near equilibrium reads

E(P)(r − r0, S, m) = ∑
〈i, j〉, i �=mki j

(
di j − d0

i j

)2
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(
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where the first term depicts unbound/wild-type conforma-
tional state of the protein, second and third––describe ef-
fects of ligand binding and mutations, respectively (for de-
tails, see (24)). We consider two types of mutations in SB-
SMMA: stabilizing (UP, ↑; mimics a residue substitution
with bulkier amino acids) and destabilizing (DOWN, ↓;
substitutions to small Ala/Gly-like residues).

A microscopic allosteric potential evaluates the elastic
work that is exerted on a particular residue i as a function of
the change of displacement of its neighbors, which is caused
by the normal modes associated with the unperturbed (0)
and perturbed (P) protein configurational states

Ui (σ ) = 1
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where σ = (σ1, . . . , σμ, . . .) is the amplitude of the change
of displacement (ri (σ ) − r 0

i = ∑
μ

σμeμ ) and parameters

εμ,i are defined from the sets of orthonormal eigenvectors
e(0)
μ and e(P)

μ obtained by diagonalizing the Hessian matri-

ces of the original and perturbed protein energy functions
(Equation 1), respectively.

The per-residue partition function is obtained by inte-
grating over the configurational ensemble given by all possi-
ble displacements σ of a residue i, allowing to calculate the
per-residue partition function and free energy
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)1/2
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Comparison of two protein states, unbound/wild-type
reference state (0) and perturbed (P) states provides the per-
residue free energy difference of the allosteric effects as a
result of the perturbation by ligand(s) binding and/or mu-
tation(s)

� g(P)
i = 1

2
kBT

∑
μ

ln
ε

(P)
μ,i

ε
(0)
μ,i

(4)

which evaluates the change in configurational work acting
on a residue i because of the perturbation. The background
free allosteric effect, allosteric modulation evaluates the free
energy difference from its mean value over the protein chain

�h(P)
i = �g(P)

i −
〈
�g(P)

i

〉
Chain

(5)

Allosteric modulation close to zero indicates that the re-
sponse at the residue/site of interest is similar to the protein-
average �g(P)

i value, i.e. to the background effect on the
whole protein.

A positive value �h(P)
i > 0 indicates that work exerted

on residue i may induce conformational changes caused by
the perturbation. A negative �h(P)

i < 0 value shows a stabi-
lization of residue i, preventing it from the conformational
change. The effect of a perturbation on the functional sites
of interest are obtained as an average over all the residues
belonging to the site.

We define the allosteric modulation range �h(m↓↑)
i , which

is a generic descriptor of the strength of allosteric signal on
residue i originated from substitutions of the residue m that
can be calculated for any residue position i of the protein

� h(m↓↑)
i = �h(m↑)

i − �h(m↓)
i (6)

The allosteric modulation range evaluates the maximal
potential value of the allosteric signal that can be caused by
the mutation from the smallest (Ala/Gly-like) to the bulki-
est (for example, Phe or Trp) residues. The calculation of
the allosteric modulation range is used for deriving the Al-
losteric Signaling Map (ASM) of the protein, which is the
exhaustive description of the allosteric response in the pro-
tein upon residue-by-residue perturbation.

We also consider Allosteric Probing Map (APM), in
which the allosteric modulation on residue i is originated
by the binding of the small probe (described by the second
term of the energy function in Equation 1) to a three-residue
segment of the protein modelled sequentially from residue
1 to residue N-2 for a protein chain of N residues. The al-
losteric modulation caused by the probe is also evaluated as

D
ow

nloaded from
 https://academ

ic.oup.com
/nar/advance-article-abstract/doi/10.1093/nar/gkaa338/5835812 by guest on 09 June 2020



Nucleic Acids Research, 2020 3

a background free effect:

�h(Probe)
i = �g(Probe)

i −
〈
�g(Probe)

i

〉
Chain

(7)

Noteworthy, the SBSMMA (20) implemented in the
server has several important advantages as well as some
drawbacks. The lack of atomic details in the Cα harmonic
model obviously affects the quality of the allosteric effects’
estimation. Indirect modeling of the binding effect and sim-
plified consideration of two-type mutations are also limita-
tions as structure of the ligand (or mutated residue) or the
actual set of interactions in the binding sites and upon mu-
tations are not explicitly considered. On the other hand, the
indirect way of mimicking the ligand binding is a generic
framework that can be applied to different proteins with-
out any preliminary knowledge of the allosteric sites. The
crude way of considering only two types of mutations al-
lows us to perform and exhaustive scanning of complete
proteins and to use a generic measure, allosteric modula-
tion range (Equation 6), for estimating allosteric signalling
caused by the potential mutation of any protein residues
regardless of the amino acid type in the native structure.
The model could be also improved by introducing the se-
quence dependence of the energy function, which is cur-
rently work in progress. Concluding this discussion on the
balance between the model’s limitations and advantages, in
the trade-off between approximation used in the model and
its computational cost the SBSMMA provides great advan-
tages of: (i) allowing the high-throughput analysis of many
structures and (ii) exhaustive accounting of allosteric sig-
nalling at per-residue resolution (ASMs and APMs). In case
of necessity for in-depth analysis with atomic resolution the
harmonic model should be replaced with the MD simula-
tions followed by the principal component analysis of the
covariance matrix that would provide an input (principal
components instead of normal modes) for the statistical-
mechanical consideration. This change will come, however,
at the price of high computational cost, which prevents the
massive and quick analysis.

Benchmarking of the predictive power of the structure-based
statistical mechanical model of allostery (SBSMMA)

We have previously shown that SBSMMA model can be
used for predictions of potential allosteric sites by simu-
lating ligand binding to protein functional sites, i.e. by re-
versing the allosteric communication (25). We hypothesized
that binding of a substrate and/or a cofactor at functional
sites would lead to a large increase of the configurational
work exerted on allosteric sites thereby allowing their iden-
tification. As there can be any number of unknown la-
tent allosteric sites, the quality of the allosteric site pre-
diction can be only estimated on the basis of the predic-
tions of known allosteric sites. Therefore, we collected a
set of 11 well-studied allosteric proteins with experimen-
tally validated allosteric and functional sites, dubbed as the
classical set (Supplementary File, Table S1), to benchmark
the predictive power of the approach. Functional and al-
losteric sites are delineated by residues located within 4.5
Å from respective ligands in crystal structures. We use the

operational definition of allosteric sites (proximity <2%),
which requires that functional and allosteric sites do not
overlap (25). Only allosteric sites satisfying above definition
were used in the benchmark experiment. We simulated lig-
and binding to functional sites of proteins from the classi-
cal set using AlloSigMA 2 server. From the distributions of
per-residue allosteric modulation obtained upon the pertur-
bation, receiver operating characteristic (ROC) curves are
plotted by calculating the true and false positive rates for
a series of bins, starting from the top 5% of the positive
range of the distribution and followed by 10%, 15% and so
on with a 5% step. A residue is considered as the true pos-
itive if it belongs to a known allosteric site, whereas a false
positive indicates otherwise. The ROC curves show that for
most allosteric sites, the true positive rate increases more
rapidly than the false positive rate, indicating that most
of the residues of known allosteric sites exhibit a large in-
crease of free energy as an allosteric response upon per-
turbing the functional sites (Figure 1A). We further com-
plemented the classical set with an additional set of 41 pro-
teins with 48 allosteric sites (Supplementary File, Table S2)
collected from the ASBench database (27). Similarly, we
measured the ROC curves for the additional set and cal-
culated the area under the ROC curves (AUC). Figure 1B
shows that large AUC values are obtained for both pro-
tein sets consist of a total of 52 proteins with 60 allosteric
sites, indicating the high predictive power for the allosteric
sites.

Implementation

The AlloSigMA 2 server is powered by the Python Flask
library (http://palletsprojects.com/p/flask/), with 3D struc-
ture visualizations rendered using the highly efficient
JavaScript PV library (http://dx.doi.org/10.5281/zenodo.
20980), per-residue free energy changes and ASMs/APMs
are rendered using the JavaScript Plotly library (http://plot.
ly), and the data-driven visualization of the effects of in-
dividual mutations or small probe bindings is powered by
the D3.js library (http://d3js.org). The C� harmonic model
implemented in the Molecular Modeling Toolkit (MMTK,
(28)) is used for the normal mode analysis. Ten lowest fre-
quency normal modes are considered in calculations (20).
The server is interfaced with the Protein Databank (29) and
PDBePISA (30). The system can process structures with up
to 1800 amino acid residues, and up to 26 protein chains.
Processing in the first mode can be done on-line, while re-
sults in the ASM and APM options will be produced sep-
arately with e-mail notification to user upon the job com-
pletion. To improve user experience, we have also imple-
mented a job queueing system using the Python Celery li-
brary (http://www.celeryproject.org), allowing users to be
notified on the job progress via email (if provided). Interac-
tive visualization of ASMs and APMs is possible for struc-
tures up to 1800 residues, as it is limited by the capacity of
web-browsers. For larger structures, users will be provided
with a PDF image of the computed ASM and APM along
with the downloadable package containing results of the
analysis and corresponding matrices, which can be further
analyzed according to the users’ needs.
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Figure 1. Benchmarking of the prediction of allosteric sites using the reverse perturbation in the SBSMMA. (A) Receiver operating characteristic (ROC)
curves for 11 proteins from the classical set of allosteric proteins; (B) area under curves (AUC) for the extended set of 52 allosteric proteins (11 proteins
from the classical set and 41 from the ASBench database (27)) with 60 known allosteric sites.

DESCRIPTION OF THE SERVER

Input and preprocessing

For the server input the user can provide either the PDB
ID of an existing protein X-ray structure or upload an in-
dividual file with protein coordinates in the standard PDB
format (Figure 2, two blocks in the top row). The prepro-
cessing starts from the ordered list of biological assemblies
in the PISA database, according to the solvation free energy
gain upon assembly formation (30). If no assembly is found,
the structure may be fetched from the Protein Databank
as is. Ten best matching homologs (99% sequence identity)
generated in the VAST server (31) are used for compiling a
comprehensive list of binding sites, which are then mapped
to the correct chains of the considered protein structure. In
the original work on SBSMMA (20), we showed a qualita-
tive similarity in the allosteric communication between al-
losteric sites and functional sites of different apo and holo
protein structures. However, for practical purposes, we rec-
ommend users to use apo form (if available), as it is natural
to observe effects on functional sites as a result of ligand
binding in the apo form.

Output of the server

The second row in the flowchart representing AlloSigMA 2
functionality shows three modes of the analysis available in
the server: ‘Binding sites and mutations’, ‘Allosteric Signal-
ing Map (ASM)’ and ‘Allosteric Probing Map (APM)’.

The first mode, ‘Binding sites and mutations’, allows
users to evaluate and visualize dynamical changes on the
protein upon perturbations in form of ligand(s) binding
and/or stabilizing(UP)/destabilizing(DOWN) mutation(s).
This part of the server is an update of the original Al-
loSigMA, color-coding the allosteric signaling dynamical
changes on both 3D structure and sequence representa-
tions: conformational changes are prevented in regions
marked by the gradient of red (negative allosteric free en-
ergy change) and originated in regions marked by gradient

of blue (work is performed on these residues – positive al-
losteric free energy). To start processing the user should se-
lect binding sites of interest and/or to make the choice of the
UP-mutations (stabilizing) and DOWN-mutations (desta-
bilizing). It is possible to consider only some of the pro-
tein chains in case if it is only required to analyze a part
of the protein complex/oligomer (see the on-line ‘Tutorial’
for details). In this server update, we have improved the
dashboard interface, using the JavaScript PV library (http:
//dx.doi.org/10.5281/zenodo.20980), to enable smooth visu-
alization of free energy changes, the binding pockets and
mutated residues on the 3D protein structure. Per-residue
free energy changes along protein chains are plotted inter-
actively using the Plotly library (http://plot.ly) for greater
ease of zooming in to analyze specific regions of interest. In
the left column of Figure 2, we illustrate the effects of hav-
ing 4 ADP ligands bound on PFK (green) and of UP mu-
tation at the residue A.301 (yellow). The color-coded repre-
sentation of the per-residue allosteric effect on the sequence
shows parts of the structure with corresponding changes of
the dynamics. The bottom chart contains a graph represen-
tation of the allosteric signaling as a result of the pertur-
bation (here, four bound ligands marked by green and one
mutation - orange). Noteworthy, analyzing outputs the user
should remember that while values exceeding kBT should
be regarded as a strong manifestation of the allosteric com-
munication, combinations of the low-values allosteric re-
sponses may result in significant allosteric modulation in
homogeneously affected protein regions.

The second mode of operation, ‘Allosteric Signaling Map
(ASM)’, is an instrument that allows to obtain a com-
prehensive control over the protein activity. The ASM is
a matrix that contains an exhaustive information on the
allosteric communication in the protein, where every row
shows the allosteric signal from the residues on y-axis to
all other residues of the protein (x-axis) represented by the
allosteric modulation range (�h(m↓↑)

i ) – the maximal poten-
tial value of the allosteric effect as a result of the substitu-
tion from the smallest (Ala/Gly like) to the bulkiest amino
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Figure 2. Flowchart of the navigation through the AlloSigMA 2 server. The structure can be fetched from the PDB or uploaded by the user directly. There
are three modes of the operation in the server: ’Binding Sites and Mutations‘, ’Allosteric Signaling Maps‘ and ’Allosteric Probing Maps‘. Example of the
outputs of these modes are illustrated in corresponding columns.
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acid (e.g. Trp or Phe). Using the ASM, it is possible to mon-
itor allosteric signaling at per-residue resolution, quantify-
ing, thus, effects of individual mutations and of substitu-
tions in regulatory exosites on the allosteric signaling. In
the context of what types of mutations are more prone to
induce certain allosteric response in the protein, researcher
can first consult with ASM for UP and DOWN mutations,
which would guide the user to decide on required type of
mutation. The ASM can also be used for evaluating po-
tential allosteric signaling from the sites designated by the
user. An example of ASM built for the phosphofructoki-
nase (3PFK) is shown in the central column (Allosteric Sig-
naling Map) of Figure 2, which highlights major patterns
of negative and positive modulations that indicates the do-
main and oligomeric structures of the protein. For exam-
ple, in tetrameric PFK each monomer consists of two do-
mains strongly interacting with each other via last quarter
of the second domain (3PFK ASM, Figure 2). In the ‘Effect
of mutation’ tab, users may select one or more mutations
to visualize the allosteric effects of these mutations on the
structure and sequence. The structure-sequence pair below
the ASM show how it can be used for the analysis of the
effect of perturbations of several residues (yellow region in
chain A) can allosterically affect dynamics in a loop domain
of another chain (G.298–306, green). Further, to find muta-
tions that can have a significant modulating effect on spe-
cific domains or binding sites, the ‘Signaling to sites’ tab was
included to enable users to see the total free energy change
on selected domains when individual residues are mutated.
The bottom structure-sequence pair in the central column
illustrates opposite effects of mutations on the loop domain
depending on the locations of mutations on the chain A of
PFK. In this case, both structure and sequence are colored
according to what allosteric signal (positive modulation –
blue; negative – red) is observed on the investigated binding
site.

The third mode of operation, ‘Allosteric probing map
(APM)’, computes the effect of small-probe binding along
the protein chain, simulating the ligand binding to three
consecutive residues along the protein chains. We simulate
the probe binding using three consecutive residues, which
is the minimal required size to describe the composition
of binding sites that provide sufficient strength to iden-
tify the communication to functional sites originating from
all possible allosteric sites. At the same time, three-residue
probes should give a readout on the effect of binding small
fragments/moieties of lead molecules without sacrificing
the resolution, compared to probing larger ones. On the ba-
sis of the exhaustive scanning of three-residues from the Al-
losteric Probing Maps, the user can then extend/merge the
probes or define a binding site based on the three-residues
probe in order to explore the allosteric effect. By mimick-
ing binding of small ligand, the APMs allow users to scan
through the protein for latent allosteric sites that may regu-
late protein activity, facilitating the fragment-based design
of new allosteric effectors that can provide high specificity.
Using the ‘Effect of binding’ tab, the user can select probe
sites and visualize the effect of the perturbation across the
protein: conformational changes in some regions indicated
by purple or prevention of them marked by dark orange.
The matrix in the right column ‘Allosteric Probing Map

(APM)’ of Figure 2 is a zoom-in of the APM, showing an
example how small-probe binding events (green) in chain A
can differently affect the stability of the F6P binding site
on chain G (red). Modelled binding of a small probe to
two sampled sites A.249–251 and A.275–277 produce op-
posite effects on the F6P site (Supplementary File, Figure
S1): while the former tends to stabilize the local structure
and restrict access to the binding site, the latter initiates con-
formational changes in the pocket, potentially allowing for
easier access and binding of the substrate.

Example of the virtual experiment on the fragment-based de-
sign of allosteric effector using ASM and APM

In order to explain how the ASM–APM combination can
be used for computational design of allosteric effectors, we
describe here a virtual experiment on building two small
ligands originating opposite allosteric signaling to the cat-
alytic site. We use here a classical allosteric protein, phos-
phofructokinase (PFK), which performs the key step of gly-
colysis via phosphorylation of fructose-6-phosphate (F6P)
into fructose-1,6-bisphosphate. The substrate F6P binds
to a cleft between the two domains of a subunit, and
the 6-phosphate group interacts with His249 and Arg252
from one subunit, and Arg162 and Arg243 from the neigh-
boring subunit. We investigated the allosteric signaling to
these four residues, developing a simple protocol for the
fragment-based design of the allosteric effector. Our goal
here is to: first, start from the analysis of the ASM and to
find locations in the protein, from which strong allosteric
signal can propagate to residues of the F6P site upon per-
turbation; second, to explore these locations with a small
probe that mimics a binding to three consecutive residues in
the protein chain and to find those that cause the strongest
allosteric modulation on the F6P site; third, to comple-
ment the initial probes with additional elements that further
modify the allosteric signal. We seek for mutations/probes
where none of the residues involved are located within 11
Å from each of the four responding residues (B.162, B.243,
D.249 and D.252) – the cutoff for being not in contact and
act allosterically used in the SBSMMA (20,24,25).

Figure 3 illustrates realization of the above protocol. On
the first step, we ranked allosteric modulation ranges in
the ASM of protein (Figure 3A, PDB ID: 3pfk) and found
five residues that originate the strongest positive and neg-
ative allosteric modulation on the four residues of the F6P
binding site (B.162, B.243, D.249 and D.252). Negative con-
trols located in the vicinity of selected ones, but showing
much weaker response are marked by asterisk (Figure 3C).
The second step, screening with a small probe produced
the APM (Figure 3b), which reveals fragments with the
strongest effects, such as A.287–289 and B.287–289 that
originate positive and 220–222, 221–223 and 223–225 that
cause negative allosteric modulation on the four residues
of the F6P binding site (Figure 3D). We also checked the
probes bound to the ‘control region’ (D.52–54 and D.219–
221) and found that they indeed did not originate any sig-
nificant allosteric signaling (Figure 3d). On the final step,
we simulated the fragment-based design by considering the
contributions from additional elements added in the probe.
We found that addition of one (B.289) or two (B.288,289)
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Figure 3. Example of the virtual computational experiment on the design of the lead molecule for allosteric effector using combination of ASM and APM.
(A) ASM of the phosphofructokinase (PFK); (B) APM of the PFK; (C) strongest allosteric modulation on the residues of the F6P binding site as a result
of mutations (illustrated on the structure below); (D) strongest allosteric modulation on the residues of the F6P binding site as a result of the probe binding,
complemented by the effect of the modified probe binding (illustrated by framed residues on the structure below).
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adjacent residues to the probed binding site (A.287–289)
strengthens the positive allosteric modulation on the F6P
site (Figure 3D, marked by triangle). At the same time, ad-
dition of residue D.228 or pair D.228, 229 to the probed
site D.220–222 strengthens the negative modulation on the
F6P site (Figure 3D, marked by triangle). These observa-
tions show the tunability of allosteric signals that can be
achieved via the ‘fragment-based’ effector design. Obtain-
ing the shapes of probes that interact with corresponding
probe-binding sites on the protein can provide the initial
leads of the effector molecules to be further modified.

CONCLUSIONS

The AlloSigMA 2 server is an update of the original Al-
loSigMA server (26), which is a response to the growing de-
mand on the computational modelling and screening of al-
losteric drugs. As we discussed it recently elsewhere (3), the
quest for allosteric drugs is as strong as challenging because
of the distinctive characteristics of the allosteric sites, effec-
tors and their modes of interactions and actions (2,3,18).
We, therefore, proposed to use recently developed very ba-
sic physical model, structure-based statistical mechanical
model of allostery (SBSMMA, (20,24,25)), which allows to
take protein activity under comprehensive allosteric control
at per-residue resolution (24). Complementing the old op-
tions that allow to evaluate the energetics of allosteric sig-
naling caused by ligand binding and/or mutations (26), we
provide here two new modes of operation – Allosteric Sig-
naling Map (ASM) and Allosteric Probing Map (APM).
The ASM of a protein contains an exhaustive residue-by-
residue description of the allosteric signaling, where the al-
losteric effect of substitution on every protein position is
calculated for all other residues of the protein. In addition
to the demonstrated above way of using the ASM data for
prediction of the allosteric tuning of the protein activity
(5,6), prediction of the latent cancer drivers (8–10) and of
the effects of nsSNPs is another important area of ASM ap-
plication (7,10). The APM, in turn, describes the complete
picture of allosteric modulation as a result of the binding
of small probe that interacts with three-residue segments of
the protein. We show how starting from the big picture of al-
losteric signaling in the protein presented in ASM, one can
find potential allosteric sites that would provide required
mode and strength of the allosteric communication. Then,
turning to APM, the user can evaluate an effect of the ligand
binding as a result of the screening with a small probe des-
ignated to interact with a three-residue segment of the pro-
tein chain followed by the adjustment of the required effect
with added (on the basis of ASM data) interactions. Result-
ing pattern on the protein structure will serve as a template
for sketching a lead candidate of potential allosteric drug.
We would like to emphasize that the exhaustive and, at the
same time, very basic nature of ASMs and APMs allow to
obtain the high-throughput data on many proteins of dif-
ferent types and, then, to use it as an input to the deep and
reinforcement learning approaches (13). We believe, there-
fore, that AlloSigMA 2 can be of great help for: (i) com-
putational evaluation and planning of experimental efforts
on the allosteric control of protein activity and on design
of allosteric effectors; (ii) for obtaining the ASM and APM

data, which will be indispensable in future efforts on the pre-
diction of allosteric effects of nsSNPs and cancer drivers,
and, of course, for the advances in the AI-based design of
allosteric drugs.
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