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ABSTRACT 17 

High-content imaging (HCI) provides quantitative and information-rich measurements of chemical effects 18 

on human in vitro cell models. Identification of discriminative phenotypic endpoints from cellular features 19 

obtained from HCI is required for accurate assessments of potential chemical hazards. However, the use 20 

of suboptimal metrics to quantify the concentration response curves (CRC) of chemicals based on these 21 

features may obscure discriminative features, and lead to non-predictive endpoints and poor chemical 22 

classifications or hazard assessments. Here, we present a systematic and data-driven study on the 23 

performances of different CRC metrics in identifying image-based phenotypic features that can accurately 24 

classify the effects of reference chemicals with known in vivo toxicities. We studied four previous HCI in 25 

vitro nephro- or pulmono-toxicity datasets, which contain phenotypic feature measurements from different 26 

cell and feature types. Within a feature type, we found that efficacy metrics at higher chemical 27 

concentrations tend to give higher classification accuracy, whereas potency metrics do not have obvious 28 

trends across different response levels. Across different cell and feature types, efficacy metrics generally 29 

gave higher classification accuracy than potency metrics and area under the curve (AUC). Our results 30 

suggest that efficacy metrics, especially at higher concentrations, are more likely to help us to identify 31 

discriminative phenotypic endpoints. Therefore, HCI experiments for toxicological applications should 32 

include measurements at sufficiently high chemical concentrations, and efficacy metrics should always 33 

be analyzed. The identified features may be used as specific toxicity endpoints for further chemical 34 

hazard assessment.  35 

mailto:loolh@bii.a-star.edu.sg


2 
 

INTRODUCTION 1 

High-content imaging (HCI) is increasingly used to develop in vitro cell-based toxicity models 2 

(Slikker et al. 2018; Thomas et al. 2019), including those for nephrotoxicity (Su et al. 2016; Sjögren et al. 3 

2018; van der Ven et al. 2020), pulmonary toxicity (Lee et al. 2018), hepatotoxicity (Wink et al. 2018), 4 

neurotoxicity (Delp et al. 2019), and cardiotoxicity (Grimm et al. 2017). The technology is especially useful 5 

when the modes of action of a chemical is unknown or involves multiple biological pathways, because 6 

different phenotypic features can be measured simultaneously from HCI images, including features of 7 

cellular morphology, intracellular organelle structures, and protein expression and spatial distribution 8 

patterns (Loo et al. 2007, 2009; Bougen-Zhukov et al. 2017). However, which of these features should 9 

be used as toxicity endpoints for specific adverse effects of interest or concern? Not all features are 10 

expected to provide the same discriminative information about these adverse effects. Cell death and 11 

other related cytotoxicity endpoints are common choices, however these features were previously found 12 

to be sensitive, but not specific for predicting in vivo toxicity (Lin and Will 2012; Lee et al. 2018). Other 13 

non-cell-death related phenotypic features may be more specific to the key cellular events associated to 14 

the adverse effects, and thus more accurate in distinguishing between toxic and non-toxic chemicals. 15 

Therefore, discriminative endpoints for different adverse effects are likely to be different, and thus have 16 

to be separately identified for each adverse effect. 17 

Commonly used feature selection methods  (Kohavi and John 1997) cannot be directly applied to 18 

HCI data generated from toxicological studies, because cellular responses in these studies are usually 19 

measured in multiple discrete chemical concentrations (Sirenko et al. 2015; Grimm et al. 2015; Su et al. 20 

2016; Hafner et al. 2017; Lee et al. 2018) (Fig. 1a). To model the relationship between chemical 21 

concentrations and a phenotypic effect, a concentration-response curve (CRC) is usually first fitted based 22 

on the measured discrete feature values and then characterized by a CRC metric (Fig. 1b). To the best 23 

of our knowledge, there is no previous published work on which CRC metrics are appropriate or optimum 24 

for selecting discriminative phenotypic endpoints. This an important question because the use of non-25 

optimum CRC metrics in HCI toxicological studies may lead to non-predictive endpoints and poor 26 

chemical classifications or hazard assessments. 27 
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Common CRC metrics include potency metrics that report the concentrations of chemicals 1 

required to produce a pre-defined effect, such as the half-maximal effective concentration (EC50); and 2 

efficacy metrics that report the maximum effect levels of chemicals (Emax). In fact, for a CRC of a 3 

phenotypic feature, there are infinitely many possible potency- or efficacy-based metrics, such as the 4 

effective concentration at any Y% response level (i.e., ECY), or the response level at any X concentration 5 

level (i.e., R[X]), that can be evaluated from the same curve. (For a log-logistic CRC model, Emax is equal 6 

to R[∞].) The area under the curve (AUC) is another common CRC metric which combines elements of 7 

both potency and efficacy quantifications. In the literature, potency metrics are more commonly used than 8 

efficacy metrics for in vitro toxicological studies (O’Brien et al. 2006; Lin and Will 2012; Sirenko et al. 9 

2015; Sjögren et al. 2018) (Supplementary Fig. S1). In the US EPA Toxicity Forecaster (ToxCast) 10 

Programme, a variant of EC50 called “activity concentration at 50% of maximal activity” (AC50) is used to 11 

characterize and study the high-throughput toxicity screening data generated by the programme, some 12 

of which are based on HCI (Kleinstreuer et al. 2014; Paul Friedman et al. 2020). The wide adoption of 13 

potency metrics may be due to the fact that most traditional toxicological endpoints are dichotomous (or 14 

quantal) in nature, such as the percentages of cells, animals, or humans exhibiting phenotypes related 15 

to an adverse effect. Therefore, these endpoints usually have bounded and normalized dynamic ranges 16 

(and thus efficacy values). However, phenotypic features obtained from HCI studies are usually 17 

continuous in nature, thus having non-bounded, non-normalized, or even mixed-signed dynamic ranges. 18 

For example, a chemical may increase the intra-cellular level of a toxicity marker, while another chemical 19 

may reduce the level of the same marker (Fig. 1b). Similarly, a chemical may cause cell death and reduce 20 

cell size, while another chemical may create multi-nucleated cells and increase cell size. Therefore, it is 21 

not obvious which kind of metric should be used to quantify CRCs based on these types of phenotypic 22 

features, especially for the aim of selecting the most discriminative features to be used as toxicity 23 

endpoints.  24 

Previous studies of high-throughput screening data based on cell viability or growth rates have 25 

found that potency metrics may yield unreliable results (Hafner et al. 2017), and efficacy metrics may 26 

reveal systematic variation in responses to perturbations that are not obvious under potency metrics 27 
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(Fallahi-Sichani et al. 2013). A recent HCI toxicological study evaluated three potency metrics when 1 

constructing a nephrotoxicity model (Sjögren et al. 2018). However, to the best of our knowledge, no 2 

previous systematic survey has been performed to understand how different types of CRC metrics may 3 

affect the identification of phenotypic features related to an adverse effect of interest. Most other HCI 4 

studies focused on the selection of the most informative phenotypic features (Su et al. 2016; Wink et al. 5 

2018; Lee et al. 2018), or the most appropriate CRC fits for phenotypic features (Calhelha et al. 2017). A 6 

rigorous and systematic study will help to guide future analysis of HCI data for toxicological applications. 7 

 8 

Our study aimed to answer three principal questions. First, how similar is the information that 9 

potency and efficacy metrics provide on the cellular effects of reference chemicals with or without known 10 

adverse effects? If the metrics are highly correlated, they would lead to the same discriminative endpoints 11 

and thus no further analysis is needed. Second, do potency or efficacy metrics help us to identify 12 

phenotypic features that yield more accurate classifiers, and are there different trends across different 13 

cell lines or feature types? In this study, supervised classification accuracy was used as a proxy indicator 14 

of discriminative features relevant to an adverse effect (Fig. 1c). Third, of the many possible potency- or 15 

efficacy-based metrics, what are the characteristics of metrics that produce the most accurate classifiers? 16 

By identifying optimum CRC metrics for discriminative feature selection, we can prevent informative 17 

phenotypic features from ending up ‘hidden’ behind obfuscating metrics, and recommend best practices 18 

for HCI data analysis that may be applicable to a broad range of feature types, datasets, and applications. 19 

 20 

These optimum CRC metrics are not meant to replace other existing CRC metrics designed for 21 

estimating the points of departure (POD) of phenotypic endpoints, such as the benchmark dose or 22 

concentration (BMD or BMC) (Setzer and Hogan 2012; Gift et al. 2019). In fact, these metrics complement 23 

each other. BMC requires the selection of a benchmark response (BMR) level that is either generally 24 

considered to be “biologically significant” or, in cases where such a level is unknown or unclear, 25 

statistically different from the negative controls (Setzer and Hogan 2012). For most HCI features, the 26 

BMR levels are usually unknown, and highly dependent on the adverse effects of concern, feature types, 27 
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and biological or experimental variations in the collected data. For example, the same phenotypic 1 

endpoint may have different BMR levels for different adverse effects that may be associated with the 2 

endpoint. A uniform BMR threshold, such as one control standard deviation away from the mean, may 3 

not be suitable for all features under all circumstances. Therefore, to allow a systematic comparison of 4 

CRC metrics, our study only considered metrics that are fully defined based on raw or fitted values of 5 

CRCs, such as ECY and R[X]. Once the discriminative endpoints for an adverse effect have been 6 

identified, the standard BMC or other relevant metrics may still be applied to the CRCs of these endpoints 7 

for determining BMRs or PODs, while taking into considerations of the various aforementioned factors or 8 

uncertainty specific to the selected endpoints. 9 

 10 

MATERIALS AND METHODS 11 

HCI datasets 12 

We analyzed four previous HCI datasets (Su et al. 2016; Lee et al. 2018), representing two human 13 

lung cell types (a bronchial epithelial cell line, BEAS-2B; and an alveolar epithelial cell line, A549) or two 14 

human kidney cell types (a proximal tubule epithelial cell line, HK-2; and primary human proximal tubule 15 

cells, “HPTC”) treated with 33 or 42 chemical compounds, respectively (Fig. 1d). The total number of 16 

chemicals assessed exceeds those of other contemporary HCI in vitro toxicological studies (Grimm et al. 17 

2017; Sjögren et al. 2018; Delp et al. 2019), and their constituent moeities cover a broad area of 18 

toxicological relevance, as evinced by the spread of their chemical structure space coverage when 19 

compared against all the 8,795 chemicals from the United States Tox21 library (Supplementary Fig. S2) 20 

(Richard et al. 2016). The datasets contain phenotypic feature measurements obtained from a wide range 21 

of chemical concentrations: 0-2,000 μM for lung and 0-2,000 μg/ml for kidney cells. Each chemical was 22 

tested in seven discrete concentrations over these concentration ranges. Furthermore, the in vivo toxicity 23 

or non-toxicity of these chemicals are known and annotated based on expert review of the literature. For 24 

example, paraquat is annotated as pulmonotoxic due to studies reporting human in vivo pulmonary 25 

edema and fibrosis following accidental ingestion (Smith and Heath 1974; Dinis-Oliveira et al. 2008); 26 

ketoconazole is annotated as non-pulmonotoxic because clinical trials or post-marketing surveillance 27 
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reported liver damage in humans but no lung damage (Sugar et al. 1987); details of all annotation sources 1 

exist in the previous studies  (Su et al. 2016; Lee et al. 2018). For the lung cell data sets, 13 chemicals 2 

were annotated as pulmonotoxic and the remaining 20 as non-pulmonotoxic; for the kidney cell data sets, 3 

23 were annotated as nephrotoxic and 19 annotated as non-nephrotoxic. Finally, all four datasets are 4 

based on four similar fluorescent markers, namely (1) 4′,6-diamidino-2-phenylindole (DAPI) or Hoechst, 5 

staining DNA; (2) phalloidin, staining the cytoskeletal actin filaments; (3) antibodies specific to 6 

phosphorylated histone 2AX (hereafter referred to as “γH2AX”), which is implicated in DNA damage 7 

response (Rogakou et al. 1998); and (4) a whole cell stain for the full cellular region. These four datasets 8 

provide similar types of phenotypic features based on these four markers, allowing us to systematically 9 

compare the performances of CRC metrics for the same feature types across different cell lines, and 10 

determine the generality of the observed trends. 11 

 12 

Phenotypic feature types 13 

In HCI images, cells are located and oriented arbitrarily with respect to the field of view. The 14 

phenotypic features used to describe the cells must therefore be invariant under translations or rotations 15 

of the images. The four datasets that we used contain either 129 or 166 invariant phenotypic features 16 

(Fig. 1d). The complete list of phenotypic features used in these previous studies and their definitions 17 

can be found in Supplementary Table S1 and Supplementary Methods. In the original studies, these 18 

features were measured using the cellXpress software (v1.4.3; Bioinformatics Institute, Singapore) 19 

(Laksameethanasan et al. 2013). The features can be divided into six types. Morphology features are 20 

cellular shape properties, such as cell size and aspect ratios, derived from the binary cellular or nuclear 21 

masks obtained from cell and nuclear segmentations, respectively. Aspect ratios are an example of a 22 

feature with an unbounded range; unlike cell size, there is no theoretical lower (or upper) limit to their 23 

divergence from a control population. Intensity features summarize the staining levels of fluorescent 24 

markers (HCI Datasets) at the whole-cell level or in different subcellular regions. Most intensity features 25 

have mixed-signed dynamic ranges (Fig. 1b and e), because a chemical may increase or decrease the 26 

expressions of the proteins or other biomolecules labelled by these markers.  Intensity ratio features are 27 
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the ratios of the staining levels of pairs of different markers at the same subcellular regions, or the same 1 

markers at two different subcellular regions. Correlation features measure the spatial or pixel correlations 2 

between marker pairs in the obtained cellular images, indicating possible subcellular co-localizations of 3 

the markers. These can be assessed either as correlation coefficients (quantifying markers pairs’ co-4 

occurrence in the same areas) or as cross-correlations (quantifying marker pairs’ co-occurrence in similar 5 

patterns). Texture features summarize a marker’s spatial occurrence patterns as defined in Haralick’s 6 

original paper (Haralick et al. 1973). Finally, cell count is the number of identified cells. The feature is 7 

usually expressed as a proportion of the cell count of a control experiment, and its range has a definite 8 

lower bound, i.e. 0 cells. 9 

 10 

CRC fitting 11 

Each of the HCI datasets included phenotypic feature values from four replicates. We first 12 

calculated the median response value from the four replicates, and then the log2-ratio of this median 13 

value with respect to the median value of the corresponding solvent controls. The resulting quantity 14 

represents an experimentally-determined average response to the chemical. Each chemical was tested 15 

in seven discrete concentrations (X), resulting in a set of seven averaged response values. In cases 16 

where chemicals induced high cell-death rates, reliable average response values cannot be computed. 17 

Therefore, treatments yielding median cell counts < 15% that of the solvent controls had their feature 18 

responses recorded as “NA”. 19 

We fit three different CRC models to the set of average response values for each feature and 20 

chemical (Fig. 1b):  21 

Model A: 𝑓(𝑥) = 𝛼 −
𝛼

1+𝑒𝑥𝑝(𝛽(𝑙𝑜𝑔 𝑥−𝑙𝑜𝑔𝛾))
    (1) 22 

Model B: 𝑓(𝑥) =
𝛼′

1+𝑒𝑥𝑝(𝛽′(𝑙𝑜𝑔 𝑥−𝑙𝑜𝑔𝛾′))
     (2) 23 

and 24 

Model C: 𝑓(𝑥) = 0      (3) 25 
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where 𝛼,𝛽,𝛾,𝛼 ′,𝛽′, and 𝛾 ′ are all empirical parameters determined via least-squares-error minimization. 1 

The average responses for the cell count feature were not log2-transformed prior to curve-fitting, which 2 

necessitates a modification to Model C: 3 

Model C’: 𝑓(𝑥) = 1      (4) 4 

 5 

For each chemical and phenotypic feature combination, we selected the best fitted CRC model 6 

according to the Akiake Information Criterion: 7 

AIC = 2 (𝐷 − 𝑙𝑜𝑔 (
∑(𝜀𝑖)

2

𝑚
))    (5) 8 

where 𝐷 is the number of degrees of freedom in the model, 𝜀𝑖 is the residual error for data point 𝑖, and 𝑚 9 

is the number of data points (which in our case will usually be equal to the number of experimentally 10 

tested concentrations). The model with the lowest AIC is interpreted as exhibiting the best compromise 11 

between model complexity and goodness of fit. 12 

 13 

Area under the curve 14 

For consistency, the concentration range for which the area under the curve is computed must 15 

remain the same for all CRCs (Pozdeyev et al. 2016), so in our quantification this metric is defined by an 16 

area bound by the chords [X] = 31 μM; [X] = 2,000 μM; the CRC; and the response value at control (i.e. 17 

f(x) = 0 for Models A, B, C; f(x) = 1 for Model C’). For a Model B CRC, the AUC is then the area ‘above’ 18 

the curve; in these cases we assign the AUC a negative valence in order that the metric can retain the 19 

directionality information contained in its efficacy component. The AUC values were computed in log10-20 

space of concentration and log2-space of response (except for the cell count feature, where we used 21 

linear space for response) via the trapezium rule at seven log-equidistant concentration intervals (Huang 22 

and Pang 2012). 23 

 24 

Quality control 25 

Some highly cytotoxic chemicals may yield multiple NA values such that there are fewer than four 26 

concentrations with finite response values. In these cases, Model A and Model B CRCs cannot be fit, so 27 
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we designated the chemical as “No Cell” (or NC). No further phenotypic analysis is performed for these 1 

chemicals. 2 

Noisy experimental results may yield CRCs which extrapolate extremely large ECY values. Thus, 3 

we limit all ECY values to a maximum of 99,999 μM. Across all datasets, approximately 14% of Model A 4 

or Model B CRCs gave EC50 values that hit this limit. Analogous limiting conditions were unnecessary for 5 

the R[X] values because they are constrained to the experimental test concentrations ≤2,000 μM. Model 6 

C and Model C’ describe constant responses that are invariant to the tested chemical concentrations. 7 

We assign their potency metric values (EC10 to EC90) to the same maximum limit of 99,999 μM. Across 8 

all datasets, approximately 38% of CRC were Model C or C’. 9 

 10 

Supervised toxicity classification 11 

For each phenotypic feature, the CRC metric values for all the chemicals were linearly normalized 12 

to a [-1, 1] range before a linear L2-regularized L2-loss support vector machine was trained to classify 13 

the data (Fan et al. 2008). We used linear SVM classifiers because they produce continuous decision 14 

boundaries that are easier to interpret in a biological context than the discontinuous decision boundaries 15 

that may be produced by more complex kernels.  16 

For each dataset, phenotypic feature, and CRC metric combination, we trained a two-stage 17 

cascade classifier to assess the chemicals according to two annotated classes: “positive” for chemicals 18 

in the nephrotoxic and pulmonotoxic classes, “negative” for those in the non-nephrotoxic and non-19 

pulmonotoxic classes. The first stage of the cascade assigns all the NC chemicals to “positive”. In the 20 

second stage, we used a stratified 10-fold cross validation procedure (Su et al. 2016) to assemble training 21 

and test datasets from the CRC metric values for the remaining chemicals. The proportion of annotated 22 

toxic chemicals that are correctly assigned to the positive class gives a classifier’s sensitivity; the 23 

proportion correctly assigned to the negative class gives a classifier’s specificity. The mean of specificity 24 

and sensitivity gives the balanced accuracy of toxicity classification (BAC). 25 

 26 

 27 
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Chemical Structure Space 1 

Chemical structure space comparison with the Tox21 chemicals database (U.S. EPA 2013) 2 

involved visualization via t-distributed stochastic neighbour embedding (t-SNE) (van der Maaten and 3 

Hinton 2008). SMILES were used to generate a chemical space distance matrix using the smiles2sdf() 4 

and sdf2ap() routines from the “chemmineR” library (v3.36.0). Approximately 2% of the Tox21 5 

chemicals had invalid SMILES (e.g. non-stoichiometric, polymeric); after data reduction there were 8,599 6 

chemicals which could be incorporated into the t-SNE plot. For plotting we used the Rtnse() routine from 7 

the “Rtsne” library (v0.15) with perplexity = 6 and theta = 0.4, other settings default (Supplementary Fig. 8 

S2).  9 

 10 

Analysis software 11 

All analyses were conducted under the R environment (v.3.6.3). We used the drm() and 12 

predict() functions of the “drc” package (v 3.0.1) for model fitting and CRC-metric evaluations. The 13 

fitting procedures used are identical to those used by the authors of the original study for the BEAS-2B 14 

and A549 datasets (Lee et al. 2018). The original study for the HK-2 and HPTC datasets used a slightly 15 

different procedure (Su et al. 2016) to fit the CRCs, so the fitted metric values take slightly different values 16 

in the current study. 17 

To assemble the SVM classifiers we used the LiblineaR() function of the “LIBLINEAR” package 18 

(v.2.10-8) (Fan et al. 2008), maintaining the default values for all the parameters except cost, which 19 

describes the penalty applied to misclassifications far from the decision boundary. During each fold of 20 

the cross validation, we automatically determine the optimum cost value using a grid search of 100, 101, 21 

102, 103, 104, and 105. Computations for the 95th-percentile values (Results) were performed using the 22 

quantile function from the “stats” package (v.3.6.3) with type = 4 and other default parameters. 23 

  24 
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RESULTS 1 

Phenotypic features are mostly mixed signed 2 

We found that most of the phenotypic features (64%) from the four HCI datasets have “mixed signs”, 3 

where at least 10% of the tested chemicals give Model A CRCs (i.e., increased response relative to 4 

controls) and at least 10% of other tested chemicals give Model B CRCs (i.e., decreased response) (Fig. 5 

1e). Interestingly, the proportions of mixed-signed features are similar across the four datasets, despite 6 

the different tested chemicals. The direction of a CRC is likely to be indicative of the mechanism of action 7 

of the associated chemical; and a potency metric, such as EC50, does not capture this information. 8 

Therefore, the existence of many mixed-signed features within these HCI datasets leads us to suspect 9 

that supervised feature selection based on potency metrics may not be ideal. 10 

 11 

Most potency and efficacy metrics provide non-redundant information 12 

We then determined to what extent potency and efficacy metrics may convey the same or 13 

redundant information about the cellular effects of a chemical. We also considered AUC, which contains 14 

information from both potency and efficacy metrics. For each best-fitted CRC model, we extracted 17 15 

CRC metric values. They include the AUC; seven efficacy metrics, R[31], R[62], …, R[2,000], which report the 16 

response of the CRC at 31, 62, …, and 2,000 μM, respectively; nine potency metrics, EC10, EC20, …, 17 

EC90, which report the concentrations required to elicit 10, 20, …, and 90% of the maximum response 18 

value of the CRC (Fig. 2a and Methods). The correlation of AUC values with those of other metrics is 19 

inevitable as area must increase with the height (efficacy) and width (potency) of the CRC. For the other 20 

CRC metrics, the relationship is less obvious. When comparing potency to efficacy metrics, redundancy 21 

is indicated by a negative correlation, because lower ECY values represent stronger potency, while lower 22 

R[X] values represent weaker efficacy. Mixed-signed phenotypic features (Fig. 1b and e) complicate the 23 

comparison because a strong efficacy is represented by the magnitude of the response, but not by the 24 

sign. Therefore we computed the Kendall’s correlation coefficients (τ) between absolute response values 25 

|R[X]| and ECY for each feature. Metric-pairs with ECY values obtained from the constant responses 26 

(Models C and C’) or extrapolated substantially beyond the measured data ranges were excluded from 27 
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this analysis. Overall, we found that the mean correlation coefficients between most of the evaluated 1 

potency and efficacy metrics have low to moderately negative values (τ = 0 to -0.50) (Fig. 2b). The global 2 

minima (τ = -0.534) occurs at |R[125]| and EC10. There are moderately negative correlations between |R[X]| 3 

at low-to-intermediate concentrations (X) and ECY at low effect levels (Y). Similar trends were observed 4 

when each of the datasets were analyzed individually (Supplementary Fig. S3).  5 

To better understand the observed weak correlations, we compared the values of R[2,000] and EC50 6 

evaluated from the same CRCs for all the phenotypic features from the BEAS-2B dataset (Fig. 2c). R[2,000] 7 

was used to develop the predictive pulmonary toxicity models in the original study of the dataset (Lee et 8 

al. 2018). We found that features with low R[2,000] magnitudes across most of the chemicals (“low-effect 9 

features” in Fig. 2c) have varying EC50 values. Furthermore, for those features with increased R[2,000] 10 

values induced by certain chemicals, we often did not observe corresponding systematic changes in their 11 

EC50 values under the same chemicals (Fig. 2d). Different chemicals clusters can be identified with 12 

similar phenotypic responses across sets of features, and analogously we observe different phenotypic 13 

feature clusters with similar response values across sets of chemicals, possibly indicating shared 14 

mechanisms of action of these chemicals (Fig 2c). For example, towards the top of the left dendrogram 15 

there is a dendrite or cluster composed almost exclusively of actin-related intensity features (e.g. the 16 

mean actin intensity over the whole-cell region), all giving a similar profile of responses across all 17 

chemicals. And at the bottom of the dendrogram we identified a cluster of “low-effect features”, 18 

predominantly texture and correlation feature types (e.g. the spatial correlation coefficient of γH2AX and 19 

actin intensities at the whole-cell region), which are collectively inactive for all of the lung datasets’ 20 

chemicals. Most other features do not form clear clusters, suggesting they are not strongly correlated. 21 

Thus, a diverse group of features were being studied in our work. Interestingly, for the BEAS-2B dataset, 22 

most of the high-effect features are intensity or morphology features (Fig. 2c and d). Our results suggest 23 

that most of the tested potency and efficacy metrics convey non-redundant information, and one type of 24 

metric cannot be used to infer the value of the other. Therefore, using different CRC metrics as classifier 25 

inputs is likely to result in supervised chemical classification with dramatically different accuracies, and 26 
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thus different final endpoints being selected. This affirms the importance of identifying the most 1 

appropriate CRC metric before performing feature selection to identify a discriminative endpoint. 2 

 3 

Efficacy metrics are more likely to yield top-performing optimal classifiers  4 

Known toxic vs non-toxic chemicals might be better distinguished by the magnitude of their elicited 5 

biological responses (i.e. an efficacy metric), or by the concentration at which they elicit a response (i.e. 6 

a potency metric), or some hybrid of the two (i.e. the AUC metric). To determine which, we built 17 support 7 

vector machine (SVM) classifiers (Cortes and Vapnik 1995) per feature, one for each of the metrics, and 8 

estimated their balanced accuracies using a cross-validation procedure (Fig. 3a). The optimal CRC 9 

classifier for a feature is the one that yields the SVM with the highest BAC value. Features that are not 10 

informative for the specific adverse effects of interest will also have “optimal” classifiers, but such 11 

classifiers are liable to have low BAC values at ~50-60%. The identities of the metrics that contribute to 12 

such classifiers are not useful for our study, as we are interested only in the phenotypes which might be 13 

ranked highly by a feature selection method. Therefore, we categorized the results according to either 14 

feature sources (BEAS-2B, A549, HK-2, or HPTC datasets) or types (intensity, intensity ratio, correlation, 15 

texture, morphology features, or cell count), and only considered “top-performing” features with optimal 16 

classifier BACs in the top decile of all optimal classifiers associated to each feature category. Overall, we 17 

found that efficacy metrics consistently give the largest proportions of optimal toxicity classifiers for top-18 

performing features in all categories (Fig. 3b). For efficacy metrics, we found that R[2,000] was usually 19 

over-represented (>1/17 metrics = 5.88%) and contributed to >29% of top-performing features’ classifiers 20 

in all of the categories, except cell count. Most potency metrics were under-represented (<5.88%), and 21 

even taking all nine together they contributed to only ≤25% of top-performing features’ classifiers for all 22 

feature types except cell count, despite constituting 53% (9/17) of the metrics. After R[2,000] and R[1,000], 23 

AUC was the third best-performing metric overall, providing the best BAC for 11.3% of top-performing 24 

features’ classifiers. These results suggest that, for a feature of any type, using an efficacy metric for 25 

classifier training is more likely to yield a top-performing toxicity classifier than a potency metric. 26 

Therefore, if we do not possess any other requirement or prior knowledge about a feature’s optimal CRC 27 
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metric, we should default to feature selection based on efficacy or AUC metrics, especially efficacy 1 

metrics at high concentration values. 2 

 3 

Top efficacy-based classifiers are more accurate than top potency-based classifiers  4 

To identify the CRC metric that is more likely to select the feature with the highest accuracy among 5 

all features from a given feature type, we first determined the median BAC value amongst all the top-6 

performing features’ optimal classifiers (equivalent to the 95th-percentile BAC value amongst all the 7 

optimal classifiers) trained on a specific metric but based on different features from the same feature 8 

type. Then, the analysis was repeated for all the metrics, and the metric that provided the top-performing 9 

features’ classifier with the maximum median BAC was identified. For all intensity features, we found that 10 

the maximum median BACs are associated to top-performing features’ classifiers trained on efficacy 11 

metrics in three of the four datasets (Fig. 4a). Then, we repeated the same analysis for all the six feature 12 

types. In many cases even the top-performing results for a metric give BACs in the range of 50-60%, 13 

implying that these metrics are poorly suited for toxicity discrimination and should be avoided when 14 

building a classifier. Meanwhile, the metrics that yield the globally optimal top-performing features’ 15 

classifiers across all the feature types are consistent across all datasets, namely R[2,000] (Fig. 4b). 16 

Meanwhile the feature types that yield the globally optimal top-performing features are not consistent: 17 

intensity ratio features for BEAS-2B (BAC = 81.7%), pixel correlation features for A549 (81.2%), texture 18 

features for HK-2 (75.6%), and intensity ratio features for HPTC (74.7%) (Fig. 4b). Our results show that 19 

best efficacy-metric-based classifiers tend to have higher performances than the best potency-metric-20 

based classifiers. Efficacy metrics at high concentration levels usually select features that provide globally 21 

optimum toxicity classifiers. Classifiers based on the AUC metric broadly perform better than those based 22 

on potency metrics and low-concentration efficacy metrics, but show lower BACs for top-performing 23 

features than high-concentration efficacy metrics. These trends are applicable to all the tested datasets 24 

and feature types. 25 

 26 

 27 
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The evaluation concentration of efficacy metrics correlates with accuracy 1 

If high-concentration efficacy metrics generally identify more highly discriminative features, is this 2 

phenomenon due to a positive association between supervised classifier performance and the 3 

concentration at which an efficacy metric is evaluated? We found that the BACs of top-performing optimal 4 

classifiers based on efficacy metrics (R[X]) show moderate to strong rank correlation to the concentrations 5 

(X) at which the metrics were evaluated, whereas the BACs of top-performing optimal classifiers based 6 

on potency metrics (ECY) show no or very little rank correlation to the effect levels (Y) at which the metrics 7 

were evaluated (Fig. 4c and d). Similar trends hold across all four data sets. Our results suggest that, for 8 

classifiers based on potency metrics, we cannot find general trends to guide the selection of optimum 9 

effect levels for these metrics. Therefore, one would need to compute and compare the performances of 10 

classifiers based on multiple potency metrics at different effect levels in order to identify the most 11 

discriminative features during feature selection. However, for classifiers based on efficacy metrics, higher 12 

concentration levels generally yield higher BACs, and thus should always be included in the analysis. 13 

Importantly, this also suggests that experiments at sufficiently high concentration levels will need to be 14 

performed to allow the training of highly accurate classifiers.  15 

 16 

Fitted efficacy metrics provide more accurate classifications than raw feature averages 17 

All the 17 metrics discussed so far are derived from CRCs fitted from data points measured at up 18 

to seven concentrations. If efficacy metrics for high concentrations tend to yield optimal classifiers, is it 19 

necessary to experimentally measure the feature values at low and/or intermediate concentrations? To 20 

investigate, we trained additional classifiers based on the averaged raw feature values at 2000 μM 21 

without any CRC fitting (“Avr[2,000]” metric). For the HK-2 and HPTC nephrotoxicity datasets, Avr[2,000] data 22 

were not available so they were not used for this analysis. For the A549 and BEAS-2B pulmonotoxicity 23 

datasets, four of the 33 chemicals have no data at the highest concentration (due to solubility issues), so 24 

to facilitate a fair comparison we retrained and compared both the R[2,000] and Avr[2,000] classifiers on 25 

datasets of only 29 chemicals.  26 
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For both the BEAS-2B and A549 datasets, we identified the features that contribute to the five 1 

highest BAC results for R[2,000], and compared these BACs with the BACs of classifiers trained on the 2 

same features but based on Avr[2,000]. We found that most of the top features see their BAC decrease, 3 

some by >10%, when Avr[2,000] was used (Fig. 5a). To better understand the cause of the decrease, we 4 

investigated in more detail the discrete experimentally measured values of one of these features, namely 5 

“the ratio between total γH2AX intensity at the chromosomal region over the whole-cell region”, before 6 

CRC fitting. In BEAS-2B cells treated with nickel sulfate, this feature shows a near-monotonic increase 7 

from 31 to 1,000 μM, followed by an abrupt drop at 2,000 μM (Fig 5b), which may be an experimental 8 

artifact. However, R[2,000], which is based on a fitted CRC, is much closer to Avr[500] and Avr[1,000] than 9 

Avr[2,000] is. Using the supervised classifier trained on this feature, nickel sulfide is incorrectly classified 10 

as negative for pulmonotoxicity when Avr[2,000] is used, but is classified correctly as positive when R[2,000] 11 

is used. This example illustrates how CRC-fitted feature values are less susceptible to experimental 12 

outliers. Therefore, features described by fitted efficacy metrics at high concentrations should not be 13 

replaced by averaged raw feature values from the same concentrations. Measurements at multiple 14 

concentrations are still required to get a robust fit of the features’ CRC, and more accurate estimations 15 

of the response values at high concentrations. 16 

 17 

  18 
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DISCUSSION 1 

Our investigation on the optimum CRC metrics for supervised selection of discriminative 2 

phenotypic features for chemical effect assessment has shown that efficacy metrics (R[X]) consistently 3 

provide classifiers with higher toxicity classification accuracy than potency metrics (ECY) (Fig. 3b and 4 

4b). For efficacy metrics, we also found that there are positive correlations between classification 5 

accuracy and the concentrations at which the metrics are determined. AUC contributes to more accurate 6 

classifiers than potency metrics and low-concentration efficacy metrics, but is not as accurate as the high-7 

concentration efficacy metrics. We suspect that the inclusion of potency information in AUC does more 8 

harm than good for toxicity classification. These findings are consistent across different data sets and 9 

feature types. 10 

Several factors may contribute to the positive correlations.  First, most of the CRCs are fitted by 11 

log-logistic functions, which have very small response values (R[X] ≈ 0) at low concentrations. Thus, a 12 

low-concentration-based classifier is unlikely to be able to make clear distinction of these response 13 

values, which may lead to lower classification accuracies. Second, higher concentrations of chemical are 14 

likely to lead to larger magnitudes of phenotypic response, in turn improving the signal-to-noise ratio and 15 

consistency of phenotypic readouts, leading to higher classification accuracies. Third, chemicals may 16 

induce phenotypic changes that are more consistent to their adverse effects at higher concentrations. 17 

Regardless of the underlying reasons, our results suggest that efficacy metrics, especially at higher 18 

concentration values, provide the most useful information for the purpose of supervised selection of 19 

discriminative phenotypic endpoints for chemical hazard assessment. Cytotoxicity at high concentrations 20 

is unlikely to be a major reason for the performance of high-concentration efficacy metrics. The BEAS-21 

2B dataset gives broadly the best BAC classifiers, but has very few toxic chemicals which induce 22 

cytotoxicity at the highest concentrations (Lee et al. 2018). Instead, we suspect that the main reason may 23 

be due to the differences between in vitro and in vivo toxicokinetics and microenvironments, such that 24 

higher in vitro concentrations may be needed to activate the biological pathways leading to the adverse 25 

effects. 26 
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The measurement of high-concentration responses poses several practical challenges. 1 

Chemicals may be insoluble or form aggregates at high nominal concentrations, making it difficult to 2 

experimentally achieve the desired actual concentrations. Furthermore, chemicals may be cytotoxic at 3 

high concentrations, to the extent that there are too few viable cells left to accurately perform phenotypic 4 

profiling. Possible solutions to the problems may include the use of solvents with higher solubility limits, 5 

or shorter exposure times for cells with the chemicals. Despite the difficulties in assessing chemicals at 6 

high concentrations, our results agree with several previous HCI studies that use measurements at 7 

similarly high concentration values (e.g.  3 mM or higher, or ~30 to 100× the human efficacious maximum 8 

serum concentrations, Cmax) (O’Brien et al. 2006; Xu et al. 2008; Lin and Will 2012). Therefore, 9 

measurements at high concentrations are still recommended. The need of measuring high-concentration 10 

responses in in vitro cell-based toxicity models has been recently re-identified (Sjögren et al. 2018) and 11 

debated (Sjögren and Hornberg 2019; Zink 2019). Our study provides data-driven justifications for using 12 

such measurements in HCI.  13 

As both efficacy and potency metric types are derived from the same CRCs, they may convey 14 

correlated information, but we found that the magnitude of the rank correlation (τ) between any pair of 15 

potency and efficacy metrics was always less than 0.6 (Fig. 2b and Supplementary Fig. S3). These 16 

correlations are largest between EC10 and |R[X]| evaluated at intermediate concentration levels. 17 

Qualitatively, EC10 may be used as an estimate of the concentration at which a CRC starts to deviate 18 

from the controls’ response. If the EC10 for the CRC is higher than the concentration (X) at which an 19 

efficacy metric (R[X]) is evaluated, then the curve has not deviated much from the controls at X and R[X] 20 

is most likely close to zero at X or lower concentrations. This would likely lead to a negative correlation 21 

coefficient between EC10 and R[X]. This relationship also explains why the magnitude of the correlation 22 

coefficient decreases as the response percentile (Y) at which a potency metric is evaluated increases: 23 

the higher the percentile, the less probable it is that R[X] ≈ 0 for X < ECY. Our results show that most of 24 

the tested potency and efficacy metrics convey non-redundant information, and thus are likely to result 25 

in the selections of phenotypic features with very different classification accuracy levels.  26 

Our results have important implications for the design of future HCI-based toxicological studies. 27 
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From a data processing perspective, among the top-performing features we found a strong correlation 1 

between classifier BAC and the concentration at which an efficacy metric is evaluated, so efficacy metrics 2 

at high concentrations are more likely to yield the most discriminative endpoints. Conversely, classifiers 3 

based on potency or low concentration efficacy metrics were found to give lower BAC and so should be 4 

avoided. Furthermore, no correlation was found between classifier BAC and the effect percentile at which 5 

a potency metric is evaluated, so finding optimal features based on chemical potency would require 6 

testing a range of potency metrics. From an experimental design perspective, BAC may be improved by 7 

including measurements at high concentrations. However, lower-concentration measurements should 8 

not be discarded, because efficacy metrics derived from CRCs fitted from multiple-concentration 9 

measurements yield more accurate classifiers than those derived from single high-concentration 10 

measurements. Our results may be broadly applicable to other cellular phenotypic datasets and the 11 

identification of optimum features for other adverse effects. 12 

  13 
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FIGURES 1 

Fig. 1: Phenotypic features are mostly mixed signed 2 

 3 

a) Exemplary immunofluorescence images showing γH2AX stains in BEAS-2B cells treated with 4 

increasing concentrations of carbamazepine (top) and lincomycin hydrochloride (bottom) (red lines = 5 

boundaries of automatically segmented nuclear regions.) b) Examples of three different fitted 6 

concentration response curve (CRC) models (Models A, B, and C) obtained from BEAS-2B cells treated 7 

with carbamazepine, sodium chloride, and lincomycin hydrochloride, respectively 8 



24 
 

(squares/circles/diamonds = medians of the measured feature values obtained from 4 replicates; curves 1 

= fitted CRCs based on the median values.) c) Schematic showing the study workflow: in vitro cellular 2 

response data from four previous HCI toxicological datasets were used to fit CRCs, and derive CRC 3 

metrics. Classifiers trained with these CRC metrics were evaluated for classification accuracy based on 4 

the known in vivo toxicities of the reference chemicals in these datasets, permitting the identification of 5 

the most discriminative features (red asterisk). d) Bar charts showing the numbers of different phenotypic 6 

features in the four HCI datasets that we used. e) Pie charts showing the proportion of mixed- or 7 

uniformly-signed features in the four datasets. “Mixed-signed” features are those with >10% of the tested 8 

chemicals with Model-A CRCs and >10% of the tested chemicals with Model-B CRCs. All other features 9 

are “uniformly-signed”. 10 

 11 

  12 
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Fig. 2: Potency and efficacy metrics convey non-redundant information 1 

 2 

a) Schematic showing an example of how an efficacy, potency, or AUC metric is determined from a CRC 3 

(squares = means of the measured feature values obtained from 4 replicates; curve = fitted CRC based 4 

on the median values; EC50 = concentration at which the fitted response achieves 50% of its maximum 5 
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level; R[2,000] = value of the fitted response at 2,000 μM). b) Heatmap showing the mean Kendall's rank 1 

correlation coefficients (τ) between potency and efficacy metrics, averaged over all the measured 2 

phenotypic features from all four datasets. Extremely large potency values (Methods) are not included. 3 

The heatmaps for the individual datasets are shown in Supplementary Fig. S3. c) Heatmaps showing 4 

the R[2,000] (left) and the EC50 (right) values of the 28 chemicals (columns) based on 166 phenotypic 5 

features (rows) from the BEAS-2B dataset. (Row dendrogram = a hierarchical clustering of the R[2,000] 6 

values; column dendrograms = hierarchical clusterings of the R[2,000] or EC50 values.) d) Scatter plots 7 

showing the R[2,000] and EC50 values (points) of four exemplary chemicals with increasing maximum R[2,000] 8 

values (left to right) from the BEAS-2B dataset. The points are color-coded according to the types of 9 

features on which the underlying CRCs are based, as in Fig. 2c (dash lines = 5 or 95th-percentiles of all 10 

the R[2,000] values). 11 

 12 
  13 
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Fig. 3: Efficacy metrics are more likely to yield top-performing optimal classifiers  1 

 2 

a) Schematic showing an example of how the balanced accuracies (BAC) of classifiers trained on 3 

different CRC metrics based on the same phenotypic feature (namely, mean nuclear γH2AX intensity) 4 

are determined using a 10-fold cross validation procedure (Methods). The annotations of the chemicals 5 

(red = toxic, blue = non-toxic) are used to determine the BAC values. In this example, R[2,000] (*) provides 6 

the optimal classifier for the shown feature. b) Stacked barcharts showing the distributions of CRC metrics 7 

(pinks = potency metrics; oranges = efficacy metrics; turquoise = AUC) that maximise classification 8 
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accuracy for different categories of top-performing phenotypic features. For each feature category, these 1 

classifiers have BAC values within the top decile (or 90th percentile) among all the optimal classifiers 2 

based on each feature from that category. The number of features for each category is not equal, and 3 

thus the number of top-performing optimal classifiers is also not equal.  4 

 5 

  6 
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Fig. 4: Top efficacy-based classifiers are more accurate than top potency-based classifiers 1 

 2 

a) Barcharts showing the median BACs of all the top-performing features’ optimal classifiers based on 3 

intensity features, and categorized according to the CRC metrics used (* = metrics that provide classifiers 4 

with the highest median BACs). b) Heatmaps showing the median BACs of all the top-performing 5 

features’ optimal classifiers based on different feature types, and categorized according to the CRC 6 

metrics used (* = metrics that provide classifiers with the highest median BACs across all the metrics 7 

based on specific feature types;  O = metrics that provide classifiers with the globally highest median 8 

BACs for the dataset across all the metrics and feature types). c) Plots showing the relationships between 9 

the BACs of classifiers trained on potency (R[X]) or efficacy (ECY) metrics and the concentration (X) or 10 

effect-percentile (Y) in which the metrics are determined, respectively. The relationships for three 11 
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examples of features that provide top-performing classifiers from the BEAS-2B dataset are shown, and 1 

quantified using the Kendall’s correlation coefficients (τ). d) Bar charts showing the mean τ over all the 2 

features with top-performing classifiers for different datasets (means ± standard error; significance 3 

computed via two-tailed one-sample t-test, null hypothesis = τ is zero). 4 

 5 

  6 
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Fig. 5: Fitted efficacy metrics provide more accurate classifications than raw feature averages 1 

 2 

a) Barcharts showing the BACs of classifiers trained on five phenotypic features that provide classifiers 3 

with the highest BAC values at 2,000 μM (black bars = classifiers based on the fitted feature values, i.e., 4 

R[2,000]; white bars = classifiers based on the average raw feature values, i.e., Avr[2,000]). The results shown 5 

are for the reduced set of 29 chemicals which had both R[2,000] and Avr[2,000] data. b) Example 6 

demonstrating how different feature values may be returned by Avr[x] and R[x] from the same CRC (circles 7 

= medians of the measured raw feature values obtained from 4 replicates, also correspond to Avr[x] 8 

values; curve = fitted CRC based on the median values; cross = R[2,000] value evaluated from the fitted 9 

CRC.) 10 
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Supplementary Methods 1 

Definitions of GLCM features 2 

A Grey-Level Co-occurrence Matrix (GLCM) describes how often a pixel with intensity level j occurs 3 

adjacent to a pixel with intensity level i. 4 

levelsIntensity , =ji     distance separation Pixel=d5 

levelsintensity  ofnumber  Total=L   direction separation Pixel=  6 

( ) matrix GLCM,,, =djiM  7 

Important derived properties of a GLCM for a given direction and distance include: 8 

The probability distribution matrix of a co-occurrence matrix ( ),,, djiM is used in the computation of 9 

many other properties, and is given by: 10 

( )
( )

( )
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djip
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With this we can compute other intermediate properties: 12 

Mean of the probability distribution matrix ( )  =,,, djip  13 
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i

L

j

djipdjipH
1 1

,,,2log,,,   14 

Marginal row probabilities ( ) 
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1
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Mean of ( ) xx ip = , standard deviation of ( ) xx ip = , row entropy ( ) ( ) 
=
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i

xx ipipHX
1

2log  16 

Marginal column probabilities ( ) 
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=
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i
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1
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Mean of ( ) yy ip = , standard deviation of ( ) yy ip = , col entropy ( ) ( ) 
=
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L

i

yy ipipHY
1

2log  18 
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+ =
L

j

L

i
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1 1

),,,(   where Ljik 2,...,3,2=+=  19 
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( ) 
= =

− =
L

j

L

i

yx djipkp
1 1

),,,(   where 1,...,1,0 −=−= Ljik ; the variance of this quantity is the 1 

difference variance of the GLCM. 2 
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 4 

( ) ( ) 
= =

−=
L

i

L

j

yxyx jpipjpipHXY
1 1
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 6 

And from these we can compute features used in the study (Supplementary Table S1): 7 

GLCM contrast = ( ),,, djipji
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GLCM difference entropy = ( ) ( )( )
−

=

−−

1

0

2log
L

i

yxyx ipip  10 

GLCM sum entropy = ( ) ( )( )
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L

i

yxyx ipipSE
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GLCM sum variance = ( ) ( )
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 12 

Sum average of the GLCM = ( )
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 13 

GLCM inverse difference moment = 
( )
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 14 

GLCM informational measure of correlation 1 =
( )HYHX
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1−
 15 
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GLCM informational measure of correlation 2 =  ( )HHXY −−− 22exp1  1 

Angular second moment of the GLCM = ( )
L

i

L

j

djip
2

,,,   2 

For more GLCM derivations see (Haralick et al., 1973; Zhao et al., 2016). 3 

 4 

Literature search parameters for metric types 5 

To estimate the prevalence with which different metric types are used in contemporary research, we 6 

performed web-based literature searches within the Web of Science citation indexing service.  All 7 

searches were performed with Web of Science’s “Advanced Search” function on 14th October 2019 8 

(www.webofknowledge.com). First, we searched for recent papers with abstracts referencing 9 

“concentration response curves” or related terms as a baseline using the Boolean search parameters: 10 

TS=("Dose response profile" OR "Concentration response profile" OR "Dose response 11 

curve" OR "Concentration response curve" OR "Dose response profiles" OR 12 

"Concentration response profiles" OR "Dose response curves" OR "Concentration 13 

response curves") 14 

AND 15 

PY=(2000-2019) 16 

 17 

Then we searched for papers with abstracts referencing both CRCs and terms related to potency or 18 

efficacy metrics, as listed in the IUPAC Glossary of Terms Used in Toxicology (Duffus et al., n.d.): 19 

TS=("Dose response profile" OR "Concentration response profile" OR "Dose response 20 

curve" OR "Concentration response curve" OR "Dose response profiles" OR 21 

"Concentration response profiles" OR "Dose response curves" OR "Concentration 22 

response curves") 23 

AND 24 

PY=(2000-2019) 25 

AND 26 

TS=("effective concentration" OR ECn OR EC*0 OR AC*0 OR "effective dose" OR ED*0 OR 27 

"inhibitory concentration" OR IC*0 OR ICn OR "inhibitory dose" OR ID*0 OR IDn OR 28 

file://///vboxsrv/Sharing/CRC_Paper_Drafts/www.webofknowledge.com
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"lethal concentration" OR LCmin OR LC*0 OR "lethal dose" OR LDmin OR LD*0 OR "observed 1 

effect level" LOEL OR NOEL "observed adverse effect level" OR LOAEL OR NOAEL OR "No 2 

effect level" OR "No effect dose" OR "No effect concentration" OR "NEL" OR "No 3 

response level" OR "No response dose" OR "No response concentration" OR "adverse 4 

response level" OR "adverse response dose" OR "adverse response concentration" OR 5 

"SNARL" OR "Maximum allowable concentration" OR "Maximum allowable dose" OR "Maximum 6 

contaminant level" OR "Maximum exposure limit" OR "Maximum permissible concentration" 7 

OR "Maximum permissible dose" OR "Maximum tolerable concentration" OR "Maximum 8 

tolerable dose" OR "Maximum tolerable exposure" OR "Median concentration narcotic" 9 

OR "MCn" OR "Median dose narcotic" OR "Mdn" OR “potenc*” OR “potent” OR “Benchmark 10 

dose” OR “BMD” OR “Benchmark concentration” OR “BMC”) 11 

 12 

TS=("Dose response profile" OR "Concentration response profile" OR "Dose response 13 

curve" OR "Concentration response curve" OR "Dose response profiles" OR 14 

"Concentration response profiles" OR "Dose response curves" OR "Concentration 15 

response curves") 16 

AND 17 

PY=(2000-2019) 18 

AND 19 

TS=(“efficac*” OR “R max” OR “R*0” OR “Emax”) 20 

 21 

There were 10,276 hits for the generic “concentration response curve” search, 3,122 hits for potency-22 

metric-related terms, and 1,043 hits for efficacy-metric-related terms (Supplementary Fig. S1). 23 

 24 

There are certain limitations to this search, most obviously that it only covers academic research papers 25 

or other resources that happen to have been included in Web of Science. Also the search parameters 26 

above will count papers which include both potency-metric-related and efficacy-metric-related terms in 27 

both subsets. 28 

 29 

 30 

  31 
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Supplementary Figure S1. Literature occurrence of metric types in the Web of Science database 1 

(2000-2019) 2 

 3 

  4 
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Supplementary Figure S2. t-SNE of study chemicals within Tox21 1 

Visualisation of the studies’ assay chemicals (red = pulmono-/nephro-toxic annotation, blue = non-2 

pulmono-/nephro-toxic annotation) and the chemicals of the U.S. EPA’s Tox21 chemical database (U.S. 3 

EPA, 2013) via t-distributed stochastic neighbour embedding (van der Maaten and Hinton, 2008). The 4 

Tox21 database contained 8,795 chemical entries, of which 8,599 had valid SMILES which could be 5 

incorporated into the t-SNE plot.  6 

 7 

 8 

  9 
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Supplementary Figure S3. Kendall's τ between metric pairs by dataset 1 

Heatmap showing the Kendall's rank correlation coefficients (τ) between potency and efficacy CRC 2 

metrics for all the measured phenotypic features from all four datasets. Potency metrics with extremely 3 

large or NA values (Methods) are excluded. See Fig. 2b for the coefficients over all datasets taken 4 

together. 5 

 6 

  7 
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Supplementary Table S1: Descriptions of all phenotypic features 1 

Name in cellXpress syntax Study Feature type Description 

area:mask:cell_region Both Morphology Cell area 

area:mask:dna_region Both Morphology Nuclear area 

ccoeff_normed:DNA-
Actin:cell_region Both 

Pixel 
correlations 

Correlation coefficient of DNA and actin 
intensities at the whole-cell region 

ccoeff_normed:DNA-
gH2AX:cell_region Both 

Pixel 
correlations 

Correlation coefficient of DNA and 
γH2AX intensities at the whole-cell 
region 

ccoeff_normed:gH2AX-
Actin:cell_region Both 

Pixel 
correlations 

Correlation coefficient of γH2AX and 
actin intensities at the whole-cell region 

ccorr_normed:DNA-
Actin:cell_region Both 

Pixel 
correlations 

Spatial correlation coefficient of DNA 
and actin intensities at the whole-cell 
region 

ccorr_normed:DNA-
gH2AX:cell_region Both 

Pixel 
correlations 

Spatial correlation coefficient of DNA 
and γH2AX intensities at the whole-cell 
region 

ccorr_normed:gH2AX-
Actin:cell_region Both 

Pixel 
correlations 

Spatial correlation coefficient of γH2AX 
and actin intensities at the whole-cell 
region 

cellcount Both Cell count Number of cells 

cv_intensity:Actin:cell_region Both Intensity 
Coefficient of variation of actin intensity 
at the whole-cell region 

cv_intensity:DNA:dna_region Both Intensity 
Coefficient of variation of DNA intensity 
at the nuclear region 

cv_intensity:gH2AX:cell_region Both Intensity 
Coefficient of variation of γH2AX 
intensity at the whole-cell region 

glcm_asm_mean:Actin:cell_regio
n Both Glcm textures 

Mean angular second moment of the 
whole-cell actin GLCM 

glcm_asm_mean:DNA:dna_regio
n Both Glcm textures 

Mean angular second moment of the 
nuclear DNA GLCM 

glcm_contrast_mean:Actin:cell_r
egion Both Glcm textures 

Mean contrast of the whole-cell actin 
GLCM 

glcm_contrast_mean:DNA:dna_r
egion Both Glcm textures 

Mean contrast of the nuclear DNA 
GLCM 

glcm_corr_mean:Actin:cell_regio
n Both Glcm textures 

Mean correlation of the whole-cell actin 
GLCM 

glcm_corr_mean:DNA:dna_regio
n Both Glcm textures 

Mean correlation of the nuclear DNA 
GLCM 

glcm_diff_ent_mean:Actin:cell_re
gion Both Glcm textures 

Mean difference entropy of the whole-
cell actin GLCM 

glcm_diff_ent_mean:DNA:dna_re
gion Both Glcm textures 

Mean difference entropy of the nuclear 
DNA GLCM 

glcm_diff_var_mean:Actin:cell_re
gion Both Glcm textures 

Mean difference variance of the whole-
cell actin GLCM 

glcm_diff_var_mean:DNA:dna_re
gion Both Glcm textures 

Mean difference variance of the nuclear 
DNA GLCM 
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glcm_ent_mean:Actin:cell_region Both Glcm textures 
Mean entropy of the whole-cell actin 
GLCM 

glcm_ent_mean:DNA:dna_region Both Glcm textures 
Mean entropy of the nuclear DNA 
GLCM 

glcm_idm_mean:Actin:cell_regio
n Both Glcm textures 

Mean inverse difference moment of the 
whole-cell actin GLCM 

glcm_idm_mean:DNA:dna_regio
n Both Glcm textures 

Mean inverse difference moment of the 
nuclear DNA GLCM 

glcm_info_corr1_mean:Actin:cell
_region Both Glcm textures 

Mean information measure of 
correlation 1 of the whole-cell actin 
GLCM 

glcm_info_corr1_mean:DNA:dna
_region Both Glcm textures 

Mean information measure of 
correlation 1 of the nuclear DNA GLCM 

glcm_info_corr2_mean:Actin:cell
_region Both Glcm textures 

Mean information measure of 
correlation 2 of the whole-cell actin 
GLCM 

glcm_info_corr2_mean:DNA:dna
_region Both Glcm textures 

Mean information measure of 
correlation 2 of the nuclear DNA GLCM 

glcm_sum_ave_mean:Actin:cell_
region Both Glcm textures 

Mean sum average of the whole-cell 
actin GLCM 

glcm_sum_ave_mean:DNA:dna_
region Both Glcm textures 

Mean sum average of the nuclear DNA 
GLCM 

glcm_sum_ent_mean:Actin:cell_r
egion Both Glcm textures 

Mean sum entropy of the whole-cell 
actin GLCM 

glcm_sum_ent_mean:DNA:dna_r
egion Both Glcm textures 

Mean sum entropy of the nuclear DNA 
GLCM 

glcm_sum_var_mean:Actin:cell_r
egion Both Glcm textures 

Mean of the sum variance of the whole-
cell actin GLCM 

glcm_sum_var_mean:DNA:dna_r
egion Both Glcm textures 

Mean of the sum variance of the nuclear 
DNA GLCM 

glcm_var_mean:Actin:cell_region Both Glcm textures 
Mean of the variance of the whole-cell 
actin GLCM 

glcm_var_mean:DNA:dna_region Both Glcm textures 
Mean of the variance of the nuclear 
DNA GLCM 

mean_intensity:Actin:cell_region Both Intensity 
Mean actin intensity at the whole-cell 
region 

mean_intensity:Actin:dna_region Both Intensity 
Mean actin intensity at the nuclear 
region 

mean_intensity:Actin:nondna_inn
er Both Intensity 

Mean actin intensity at the inner 
cytoplasmic region 

mean_intensity:Actin:nondna_out
er Both Intensity 

Mean actin intensity at the outer 
cytoplasmic region 

mean_intensity:Actin:nondna_pe
ridna Both Intensity 

Mean actin intensity at the pericellular 
region 

mean_intensity:Actin:nondna_re
gion Both Intensity 

Mean actin intensity at the cytoplasmic 
region 

mean_intensity:DNA:dna_region Both Intensity 
Mean DNA intensity at the nuclear 
region 

mean_intensity:gH2AX:cell_regio
n Both Intensity 

Mean γH2AX intensity at the whole-cell 
region 

mean_intensity:gH2AX:dna_regi
on Both Intensity 

Mean γH2AX intensity at the nuclear 
region 

roundness:mask:cell_region Both Morphology Cell roundness 

roundness:mask:dna_region Both Morphology Nuclear roundness 
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total_intensity_ratio:Actin-
Actin:dna_region-cell_region Both Intensity ratios 

Ratio between total actin intensity at the 
nuclear region over the whole-cell 
region 

total_intensity_ratio:Actin-
Actin:nondna_outer-cell_region Both Intensity ratios 

Ratio between total actin intensity at the 
outer cytoplasmic region over the 
whole-cell region 

total_intensity_ratio:Actin-
Actin:nondna_peridna-
cell_region Both Intensity ratios 

Ratio between total actin intensity at the 
pericellular region over the whole-cell 
region 

total_intensity_ratio:DNA-
Actin:cell_region-cell_region Both Intensity ratios 

Ratio between total DNA over actin 
intensities at the whole-cell region 

total_intensity_ratio:gH2AX-
Actin:cell_region-cell_region Both Intensity ratios 

Ratio between total γH2AX over actin 
intensities at the whole-cell region 

total_intensity_ratio:gH2AX-
DNA:cell_region-cell_region Both Intensity ratios 

Ratio between total γH2AX over DNA 
intensities at the whole-cell region 

total_intensity_ratio:gH2AX-
gH2AX:dna_region-cell_region Both Intensity ratios 

Ratio between total γH2AX intensity at 
the nuclear region over the whole-cell 
region 

total_intensity:Actin:cell_region Both Intensity 
Total actin intensity at the whole-cell 
region 

total_intensity:Actin:dna_region Both Intensity 
Total actin intensity at the nuclear 
region 

total_intensity:Actin:nondna_inne
r Both Intensity 

Total actin intensity at the inner 
cytoplasmic region 

total_intensity:Actin:nondna_oute
r Both Intensity 

Total actin intensity at the outer 
cytoplasmic region 

total_intensity:Actin:nondna_peri
dna Both Intensity 

Total actin intensity at the pericellular 
region 

total_intensity:Actin:nondna_regi
on Both Intensity 

Total actin intensity at the cytoplasmic 
region 

total_intensity:DNA:dna_region Both Intensity 
Total DNA intensity at the nuclear 
region 

total_intensity:gH2AX:cell_region Both Intensity 
Total γH2AX intensity at the whole-cell 
region 

total_intensity:gH2AX:dna_regio
n Both Intensity 

Total γH2AX intensity at the nuclear 
region 

glcm_asm_mean:gH2AX:cell_re
gion Kidney Glcm textures 

Mean angular second moment of the 
whole-cell γH2AX GLCM 

glcm_asm_std:Actin:cell_region Kidney Glcm textures 

Standard deviation in the angular 
second moment of the whole-cell actin 
GLCM 

glcm_asm_std:DNA:dna_region Kidney Glcm textures 

Standard deviation in the angular 
second moment of the nuclear DNA 
GLCM 

glcm_asm_std:gH2AX:cell_regio
n Kidney Glcm textures 

Standard deviation in the angular 
second moment of the whole-cell 
γH2AX GLCM 

glcm_contrast_mean:gH2AX:cell
_region Kidney Glcm textures 

Mean contrast of the whole-cell γH2AX 
GLCM 

glcm_contrast_std:Actin:cell_regi
on Kidney Glcm textures 

Standard deviation in the contrast of the 
whole-cell actin GLCM 
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glcm_contrast_std:DNA:dna_regi
on Kidney Glcm textures 

Standard deviation in the contrast of the 
nuclear DNA GLCM 

glcm_contrast_std:gH2AX:cell_re
gion Kidney Glcm textures 

Standard deviation in the contrast of the 
whole-cell γH2AX GLCM 

glcm_corr_mean:gH2AX:cell_reg
ion Kidney Glcm textures 

Mean correlation of the whole-cell 
γH2AX GLCM 

glcm_corr_std:Actin:cell_region Kidney Glcm textures 
Standard deviation in the correlation of 
the whole-cell actin GLCM 

glcm_corr_std:DNA:dna_region Kidney Glcm textures 
Standard deviation in the correlation of 
the nuclear DNA GLCM 

glcm_corr_std:gH2AX:cell_regio
n Kidney Glcm textures 

Standard deviation in the correlation of 
the whole-cell γH2AX GLCM 

glcm_diff_ent_mean:gH2AX:cell_
region Kidney Glcm textures 

Mean difference entropy of the whole-
cell γH2AX GLCM 

glcm_diff_ent_std:Actin:cell_regi
on Kidney Glcm textures 

Standard deviation in the difference 
entropy of the whole-cell actin GLCM 

glcm_diff_ent_std:DNA:dna_regi
on Kidney Glcm textures 

Standard deviation in the difference 
entropy of the nuclear DNA GLCM 

glcm_diff_ent_std:gH2AX:cell_re
gion Kidney Glcm textures 

Standard deviation in the difference 
entropy of the whole-cell γH2AX GLCM 

glcm_diff_var_mean:gH2AX:cell_
region Kidney Glcm textures 

Mean difference variance of the whole-
cell γH2AX GLCM 

glcm_diff_var_std:Actin:cell_regi
on Kidney Glcm textures 

Standard deviation in the difference 
variance of the whole-cell actin GLCM 

glcm_diff_var_std:DNA:dna_regi
on Kidney Glcm textures 

Standard deviation in the difference 
variance of the nuclear DNA GLCM 

glcm_diff_var_std:gH2AX:cell_re
gion Kidney Glcm textures 

Standard deviation in the difference 
variance of the whole-cell γH2AX GLCM 

glcm_ent_mean:gH2AX:cell_regi
on Kidney Glcm textures 

Mean entropy of the whole-cell γH2AX 
GLCM 

glcm_ent_std:Actin:cell_region Kidney Glcm textures 
Standard deviation in the entropy of the 
whole-cell actin GLCM 

glcm_ent_std:DNA:dna_region Kidney Glcm textures 
Standard deviation in the entropy of the 
nuclear DNA GLCM 

glcm_ent_std:gH2AX:cell_region Kidney Glcm textures 
Standard deviation in the entropy of the 
whole-cell γH2AX GLCM 

glcm_idm_mean:gH2AX:cell_regi
on Kidney Glcm textures 

Mean inverse difference moment of the 
whole-cell γH2AX GLCM 
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glcm_idm_std:Actin:cell_region Kidney Glcm textures 

Standard deviation in the inverse 
difference moment of the whole-cell 
actin GLCM 

glcm_idm_std:DNA:dna_region Kidney Glcm textures 

Standard deviation in the inverse 
difference moment of the nuclear DNA 
GLCM 

glcm_idm_std:gH2AX:cell_region Kidney Glcm textures 

Standard deviation in the inverse 
difference moment of the whole-cell 
γH2AX GLCM 

glcm_info_corr1_mean:gH2AX:c
ell_region Kidney Glcm textures 

Mean information measure of 
correlation 1 of the whole-cell γH2AX 
GLCM 

glcm_info_corr1_std:Actin:cell_re
gion Kidney Glcm textures 

Standard deviation in the information 
measure of correlation 1 of the whole-
cell actin GLCM 

glcm_info_corr1_std:DNA:dna_re
gion Kidney Glcm textures 

Standard deviation in the information 
measure of correlation 1 of the nuclear 
DNA GLCM 

glcm_info_corr1_std:gH2AX:cell_
region Kidney Glcm textures 

Standard deviation in the information 
measure of correlation 1 of the whole-
cell γH2AX GLCM 

glcm_info_corr2_mean:gH2AX:c
ell_region Kidney Glcm textures 

Mean information measure of 
correlation 2 of the whole-cell γH2AX 
GLCM 

glcm_info_corr2_std:Actin:cell_re
gion Kidney Glcm textures 

Standard deviation in the information 
measure of correlation 2 of the whole-
cell actin GLCM 

glcm_info_corr2_std:DNA:dna_re
gion Kidney Glcm textures 

Standard deviation in the information 
measure of correlation 2 of the nuclear 
DNA GLCM 

glcm_info_corr2_std:gH2AX:cell_
region Kidney Glcm textures 

Standard deviation in the information 
measure of correlation 2 of the whole-
cell γH2AX GLCM 

glcm_sum_ave_mean:gH2AX:cel
l_region Kidney Glcm textures 

Mean sum average of the whole-cell 
γH2AX GLCM 

glcm_sum_ave_std:Actin:cell_re
gion Kidney Glcm textures 

Mean sum average of the whole-cell 
actin GLCM 

glcm_sum_ave_std:DNA:dna_re
gion Kidney Glcm textures 

Mean sum average of the nuclear DNA 
GLCM 

glcm_sum_ave_std:gH2AX:cell_r
egion Kidney Glcm textures 

Mean sum average of the whole-cell 
γH2AX GLCM 

glcm_sum_ent_mean:gH2AX:cell
_region Kidney Glcm textures 

Mean sum entropy of the whole-cell 
γH2AX GLCM 

glcm_sum_ent_std:Actin:cell_reg
ion Kidney Glcm textures 

Standard deviation in the sum entropy 
of the whole-cell actin GLCM 

glcm_sum_ent_std:DNA:dna_reg
ion Kidney Glcm textures 

Standard deviation in the sum entropy 
of the nuclear DNA GLCM 

glcm_sum_ent_std:gH2AX:cell_r
egion Kidney Glcm textures 

Standard deviation in the sum entropy 
of the whole-cell γH2AX GLCM 

glcm_sum_var_mean:gH2AX:cell
_region Kidney Glcm textures 

Mean of the sum variance of the whole-
cell γH2AX GLCM 

glcm_sum_var_std:Actin:cell_reg
ion Kidney Glcm textures 

Standard deviation in the sum variance 
of the whole-cell actin GLCM 
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glcm_sum_var_std:DNA:dna_reg
ion Kidney Glcm textures 

Standard deviation in the sum variance 
of the nuclear DNA GLCM 

glcm_sum_var_std:gH2AX:cell_r
egion Kidney Glcm textures 

Standard deviation in the sum variance 
of the whole-cell γH2AX GLCM 

glcm_var_mean:gH2AX:cell_regi
on Kidney Glcm textures 

Mean of the variance of the whole-cell 
γH2AX GLCM 

glcm_var_std:Actin:cell_region Kidney Glcm textures 
Standard deviation in the variance of 
the whole-cell actin GLCM 

glcm_var_std:DNA:dna_region Kidney Glcm textures 
Standard deviation in the variance of 
the nuclear DNA GLCM 

glcm_var_std:gH2AX:cell_region Kidney Glcm textures 
Standard deviation in the variance of 
the whole-cell γH2AX GLCM 

mean_intensity:gH2AX:nondna_i
nner Kidney Intensity 

Mean γH2AX intensity at the inner 
cytoplasmic region 

mean_intensity:gH2AX:nondna_
outer Kidney Intensity 

Mean γH2AX intensity at the outer 
cytoplasmic region 

mean_intensity:gH2AX:nondna_
peridna Kidney Intensity 

Mean γH2AX intensity at the pericellular 
region 

mean_intensity:gH2AX:nondna_r
egion Kidney Intensity 

Mean γH2AX intensity at the 
cytoplasmic region 

solidity:mask:cell_region Kidney Morphology Cell solidity 

solidity:mask:dna_region Kidney Morphology Nuclear solidity 

total_intensity_ratio:gH2AX-
gH2AX:nondna_outer-cell_region Kidney Intensity ratios 

Ratio between total γH2AX intensity at 
the outer cytoplasmic region over the 
whole-cell region 

total_intensity_ratio:gH2AX-
gH2AX:nondna_peridna-
cell_region Kidney Intensity ratios 

Ratio between total γH2AX intensity at 
the pericellular region over the whole-
cell region 

total_intensity:gH2AX:nondna_in
ner Kidney Intensity 

Total γH2AX intensity at the inner 
cytoplasmic region 

total_intensity:gH2AX:nondna_o
uter Kidney Intensity 

Total γH2AX intensity at the outer 
cytoplasmic region 

total_intensity:gH2AX:nondna_p
eridna Kidney Intensity 

Total γH2AX intensity at the pericellular 
region 

total_intensity:gH2AX:nondna_re
gion Kidney Intensity 

Total γH2AX intensity at the cytoplasmic 
region 

aspect_ratio:mask:cell_region Lung Morphology Cell aspect ratio 

aspect_ratio:mask:dna_region Lung Morphology Nuclear aspect ratio 

ccoeff_normed:DNA-
Actin:dna_chromosome Lung 

Pixel 
correlations 

Correlation coefficient of DNA and actin 
intensities at the chromosomal region 

ccoeff_normed:DNA-
Actin:dna_region Lung 

Pixel 
correlations 

Correlation coefficient of DNA and actin 
intensities at the nuclear region 

ccoeff_normed:DNA-
gH2AX:dna_chromosome Lung 

Pixel 
correlations 

Correlation coefficient of DNA and 
γH2AX intensities at the chromosomal 
region 
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ccoeff_normed:DNA-
gH2AX:dna_region Lung 

Pixel 
correlations 

Correlation coefficient of DNA and 
γH2AX intensities at the nuclear region 

ccoeff_normed:gH2AX-
Actin:dna_chromosome Lung 

Pixel 
correlations 

Correlation coefficient of γH2AX and 
actin intensities at the chromosomal 
region 

ccoeff_normed:gH2AX-
Actin:dna_region Lung 

Pixel 
correlations 

Correlation coefficient of γH2AX and 
actin intensities at the nuclear region 

ccorr_normed:DNA-
Actin:dna_chromosome Lung 

Pixel 
correlations 

Spatial correlation coefficient of DNA 
and actin intensities at the chromosomal 
region 

ccorr_normed:DNA-
Actin:dna_region Lung 

Pixel 
correlations 

Spatial correlation coefficient of DNA 
and actin intensities at the nuclear 
region 

ccorr_normed:DNA-
gH2AX:dna_chromosome Lung 

Pixel 
correlations 

Spatial correlation coefficient of DNA 
and γH2AX intensities at the 
chromosomal region 

ccorr_normed:DNA-
gH2AX:dna_region Lung 

Pixel 
correlations 

Spatial correlation coefficient of DNA 
and γH2AX intensities at the nuclear 
region 

ccorr_normed:gH2AX-
Actin:dna_chromosome Lung 

Pixel 
correlations 

Spatial correlation coefficient of γH2AX 
and actin intensities at the chromosomal 
region 

ccorr_normed:gH2AX-
Actin:dna_region Lung 

Pixel 
correlations 

Spatial correlation coefficient of γH2AX 
and actin intensities at the nuclear 
region 

cv_intensity:Actin:dna_chromoso
me Lung Intensity 

Coefficient of variation of actin intensity 
at the chromosomal region 

cv_intensity:Actin:dna_region Lung Intensity 
Coefficient of variation of actin intensity 
at the nuclear region 

cv_intensity:Actin:nondna_inner Lung Intensity 
Coefficient of variation of actin intensity 
at the inner cytoplasmic region 

cv_intensity:Actin:nondna_outer Lung Intensity 
Coefficient of variation of actin intensity 
at the outer cytoplasmic region 

cv_intensity:Actin:nondna_peridn
a Lung Intensity 

Coefficient of variation of actin intensity 
at the pericellular region 

cv_intensity:Actin:nondna_region Lung Intensity 
Coefficient of variation of actin intensity 
at the cytoplasmic region 

cv_intensity:DNA:dna_chromoso
me Lung Intensity 

Coefficient of variation of DNA intensity 
at the chromosomal region 

cv_intensity:gH2AX:dna_chromo
some Lung Intensity 

Coefficient of variation of γH2AX 
intensity at the chromosomal region 

cv_intensity:gH2AX:dna_region Lung Intensity 
Coefficient of variation of γH2AX 
intensity at the nuclear region 

fraction_obj_intensity:Actin:dna_
chromosome-Actin_object Lung Intensity ratios 

Fraction of total actin object intensity at 
the chromosomal region over the whole-
cell region 

fraction_obj_intensity:Actin:dna_r
egion-Actin_object Lung Intensity ratios 

Fraction of total actin object intensity at 
the nuclear region over the whole-cell 
region 

fraction_obj_intensity:Actin:nond
na_inner-Actin_object Lung Intensity ratios 

Fraction of total actin object intensity at 
the inner cytoplasmic region over the 
whole-cell region 

fraction_obj_intensity:Actin:nond
na_outer-Actin_object Lung Intensity ratios 

Fraction of total actin object intensity at 
the outer cytoplasmic region over the 
whole-cell region 
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fraction_obj_intensity:Actin:nond
na_peridna-Actin_object Lung Intensity ratios 

Fraction of total actin object intensity at 
the pericellular region over the whole-
cell region 

fraction_obj_intensity:Actin:nond
na_region-Actin_object Lung Intensity ratios 

Fraction of total actin object intensity at 
the cytoplasmic region over the whole-
cell region 

fraction_obj_intensity:DNA:dna_c
hromosome-DNA_object Lung Intensity ratios 

Fraction of total DNA object intensity at 
the chromosomal region over the whole-
cell region 

fraction_obj_intensity:DNA:dna_r
egion-DNA_object Lung Intensity ratios 

Fraction of total DNA object intensity at 
the nuclear region over the whole-cell 
region 

fraction_obj_intensity:DNA:nond
na_region-DNA_object Lung Intensity ratios 

Fraction of total DNA object intensity at 
the cytoplasmic region over the whole-
cell region 

fraction_obj_intensity:gH2AX:dna
_chromosome-gH2AX_object Lung Intensity ratios 

Fraction of total γH2AX object intensity 
at the chromosomal region over the 
whole-cell region 

fraction_obj_intensity:gH2AX:dna
_region-gH2AX_object Lung Intensity ratios 

Fraction of total γH2AX object intensity 
at the nuclear region over the whole-cell 
region 

glcm_asm_mean:Actin:dna_regi
on Lung Glcm textures 

Mean angular second moment of the 
nuclear actin GLCM 

glcm_asm_mean:Actin:nondna_r
egion Lung Glcm textures 

Mean angular second moment of the 
cytoplasmic actin GLCM 

glcm_asm_mean:gH2AX:dna_re
gion Lung Glcm textures 

Mean angular second moment of the 
nuclear γH2AX GLCM 

glcm_contrast_mean:Actin:dna_r
egion Lung Glcm textures 

Mean contrast of the nuclear actin 
GLCM 

glcm_contrast_mean:Actin:nond
na_region Lung Glcm textures 

Mean contrast of the cytoplasmic actin 
GLCM 

glcm_contrast_mean:gH2AX:dna
_region Lung Glcm textures 

Mean contrast of the nuclear γH2AX 
GLCM 

glcm_corr_mean:Actin:dna_regio
n Lung Glcm textures 

Mean correlation of the nuclear actin 
GLCM 

glcm_corr_mean:Actin:nondna_r
egion Lung Glcm textures 

Mean correlation of the cytoplasmic 
actin GLCM 

glcm_corr_mean:gH2AX:dna_re
gion Lung Glcm textures 

Mean correlation of the nuclear γH2AX 
GLCM 

glcm_diff_ent_mean:Actin:dna_r
egion Lung Glcm textures 

Mean difference entropy of the nuclear 
actin GLCM 

glcm_diff_ent_mean:Actin:nondn
a_region Lung Glcm textures 

Mean difference entropy of the 
cytoplasmic actin GLCM 
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glcm_diff_ent_mean:gH2AX:dna
_region Lung Glcm textures 

Mean difference entropy of the nuclear 
γH2AX GLCM 

glcm_diff_var_mean:Actin:dna_r
egion Lung Glcm textures 

Mean difference variance of the nuclear 
actin GLCM 

glcm_diff_var_mean:Actin:nondn
a_region Lung Glcm textures 

Mean difference variance of the 
cytoplasmic actin GLCM 

glcm_diff_var_mean:gH2AX:dna
_region Lung Glcm textures 

Mean difference variance of the nuclear 
γH2AX GLCM 

glcm_ent_mean:Actin:dna_regio
n Lung Glcm textures 

Mean entropy of the nuclear actin 
GLCM 

glcm_ent_mean:Actin:nondna_re
gion Lung Glcm textures 

Mean entropy of the cytoplasmic actin 
GLCM 

glcm_ent_mean:gH2AX:dna_regi
on Lung Glcm textures 

Mean entropy of the nuclear γH2AX 
GLCM 

glcm_idm_mean:Actin:dna_regio
n Lung Glcm textures 

Mean inverse difference moment of the 
nuclear actin GLCM 

glcm_idm_mean:Actin:nondna_r
egion Lung Glcm textures 

Mean inverse difference moment of the 
cytoplasmic actin GLCM 

glcm_idm_mean:gH2AX:dna_reg
ion Lung Glcm textures 

Mean inverse difference moment of the 
nuclear γH2AX GLCM 

glcm_info_corr1_mean:Actin:dna
_region Lung Glcm textures 

Mean information measure of 
correlation 1 of the nuclear actin GLCM 

glcm_info_corr1_mean:Actin:non
dna_region Lung Glcm textures 

Mean information measure of 
correlation 1 of the cytoplasmic actin 
GLCM 

glcm_info_corr1_mean:gH2AX:d
na_region Lung Glcm textures 

Mean information measure of 
correlation 1 of the nuclear γH2AX 
GLCM 

glcm_info_corr2_mean:Actin:dna
_region Lung Glcm textures 

Mean information measure of 
correlation 2 of the nuclear actin GLCM 

glcm_info_corr2_mean:Actin:non
dna_region Lung Glcm textures 

Mean information measure of 
correlation 2 of the cytoplasmic actin 
GLCM 

glcm_info_corr2_mean:gH2AX:d
na_region Lung Glcm textures 

Mean information measure of 
correlation 2 of the nuclear γH2AX 
GLCM 

glcm_sum_ave_mean:Actin:dna_
region Lung Glcm textures 

Mean sum average of the nuclear actin 
GLCM 

glcm_sum_ave_mean:Actin:nond
na_region Lung Glcm textures 

Mean sum average of the cytoplasmic 
actin GLCM 

glcm_sum_ave_mean:gH2AX:dn
a_region Lung Glcm textures 

Mean sum average of the nuclear 
γH2AX GLCM 

glcm_sum_ent_mean:Actin:dna_
region Lung Glcm textures 

Mean sum entropy of the nuclear actin 
GLCM 

glcm_sum_ent_mean:Actin:nond
na_region Lung Glcm textures 

Mean sum entropy of the cytoplasmic 
actin GLCM 

glcm_sum_ent_mean:gH2AX:dn
a_region Lung Glcm textures 

Mean sum entropy of the nuclear 
γH2AX GLCM 

glcm_sum_var_mean:Actin:dna_
region Lung Glcm textures 

Mean of the sum variance of the nuclear 
actin GLCM 
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glcm_sum_var_mean:Actin:nond
na_region Lung Glcm textures 

Mean of the sum variance of the 
cytoplasmic actin GLCM 

glcm_sum_var_mean:gH2AX:dn
a_region Lung Glcm textures 

Mean of the sum variance of the nuclear 
γH2AX GLCM 

glcm_var_mean:Actin:dna_regio
n Lung Glcm textures 

Mean of the variance of the nuclear 
actin GLCM 

glcm_var_mean:Actin:nondna_re
gion Lung Glcm textures 

Mean of the variance of the cytoplasmic 
actin GLCM 

glcm_var_mean:gH2AX:dna_regi
on Lung Glcm textures 

Mean of the variance of the nuclear 
γH2AX GLCM 

mean_intensity:Actin:dna_chrom
osome Lung Intensity 

Mean actin intensity at the 
chromosomal region 

mean_intensity:DNA:dna_chrom
osome Lung Intensity 

Mean DNA intensity at the 
chromosomal region 

mean_intensity:gH2AX:dna_chro
mosome Lung Intensity 

Mean γH2AX intensity at the 
chromosomal region 

obj_mean_total_area:mask:Actin
_object Lung Morphology Mean total area of actin objects 

obj_mean_total_area:mask:DNA
_object Lung Morphology Mean total area of DNA objects 
obj_mean_total_area:mask:gH2
AX_object Lung Morphology Mean total area of γH2AX objects 

obj_number:mask:Actin_object Lung Morphology Number of actin objects 

obj_number:mask:DNA_object Lung Morphology Number of DNA objects 
obj_number:mask:gH2AX_object Lung Morphology Number of γH2AX objects 

obj_stddev_total_area:mask:Acti
n_object Lung Morphology 

Standard deviation in the total area of 
actin objects 

obj_stddev_total_area:mask:DN
A_object Lung Morphology 

Standard deviation in the total area of 
DNA objects 

obj_stddev_total_area:mask:gH2
AX_object Lung Morphology 

Standard deviation in the total area of 
γH2AX objects 

perimeter:mask:cell_region Lung Morphology Cell perimeter length 
perimeter:mask:dna_region Lung Morphology Nuclear perimeter length 
total_intensity_ratio:Actin-
Actin:dna_chromosome-
cell_region Lung Intensity ratios 

Ratio between total actin intensity at the 
chromosomal region over the whole-cell 
region 

total_intensity_ratio:Actin-
Actin:dna_chromosome-
dna_region Lung Intensity ratios 

Ratio between total actin intensity at the 
chromosomal region over the nuclear 
region 

total_intensity_ratio:Actin-
Actin:nondna_inner-cell_region Lung Intensity ratios 

Ratio between total actin intensity at the 
inner cytoplasmic region over the 
whole-cell region 

total_intensity_ratio:DNA-
Actin:dna_chromosome-
dna_chromosome Lung Intensity ratios 

Ratio between total DNA over actin 
intensities at the chromosomal region 

total_intensity_ratio:DNA-
Actin:dna_region-dna_region Lung Intensity ratios 

Ratio between total DNA over actin 
intensities at the nuclear region 

total_intensity_ratio:gH2AX-
Actin:dna_chromosome-
dna_chromosome Lung Intensity ratios 

Ratio between total γH2AX over actin 
intensities at the chromosomal region 

total_intensity_ratio:gH2AX-
Actin:dna_region-dna_region Lung Intensity ratios 

Ratio between total γH2AX over actin 
intensities at the nuclear region 
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total_intensity_ratio:gH2AX-
DNA:dna_chromosome-
dna_chromosome Lung Intensity ratios 

Ratio between total γH2AX over DNA 
intensities at the chromosomal region 

total_intensity_ratio:gH2AX-
DNA:dna_region-dna_region Lung Intensity ratios 

Ratio between total γH2AX over DNA 
intensities at the nuclear region 

total_intensity_ratio:gH2AX-
gH2AX:dna_chromosome-
cell_region Lung Intensity ratios 

Ratio between total γH2AX intensity at 
the chromosomal region over the whole-
cell region 

total_intensity_ratio:gH2AX-
gH2AX:dna_chromosome-
dna_region Lung Intensity ratios 

Ratio between total γH2AX intensity at 
the chromosomal region over the 
nuclear region 

total_intensity:Actin:dna_chromo
some Lung Intensity 

Total actin intensity at the chromosomal 
region 

total_intensity:DNA:dna_chromo
some Lung Intensity 

Total DNA intensity at the chromosomal 
region 

total_intensity:gH2AX:dna_chro
mosome Lung Intensity 

Total γH2AX intensity at the 
chromosomal region 

  1 
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