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Accelerated spin dynamics using 
deep learning corrections
Sojeong park1,2, Wooseop Kwak1 & Hwee Kuan Lee2,3,4,5*

theoretical models capture very precisely the behaviour of magnetic materials at the microscopic 
level. This makes computer simulations of magnetic materials, such as spin dynamics simulations, 
accurately mimic experimental results. New approaches to efficient spin dynamics simulations are 
limited by integration time step barrier to solving the equations-of-motions of many-body problems. 
Using a short time step leads to an accurate but inefficient simulation regime whereas using a large 
time step leads to accumulation of numerical errors that render the whole simulation useless. In this 
paper, we use a Deep Learning method to compute the numerical errors of each large time step and 
use these computed errors to make corrections to achieve higher accuracy in our spin dynamics. We 
validate our method on the 3D Ferromagnetic Heisenberg cubic lattice over a range of temperatures. 
Here we show that the Deep Learning method can accelerate the simulation speed by 10 times while 
maintaining simulation accuracy and overcome the limitations of requiring small time steps in spin 
dynamic simulations.

Magnetic materials have a wide range of industrial applications such as in Nd–Fe–B-type permanent magnets 
used for motors in hybrid  cars1,2, magnetoresistive random access memory (MRAM) based on the storage of 
data in stable magnetic  states3, ultrafast spins dynamics in magnetic  nanostructures4,5, heat assisted magnetic 
recording and ferromagnetic resonance methods for increasing the storage density of hard disk  drives6,7, exchange 
bias related to magnetic  recording8, and magnetocaloric materials for refrigeration  technologies1. Understanding 
the underlying physics of magnetic material enables us to develop much better applications. In particular, the 
study of the properties of these magnetic materials is performed experimentally by using neutron  scattering9. 
Magnetic properties of materials are also studied theoretically using computational methods. Spin dynamics 
 simulations10 are powerful tools for understanding fundamental properties of magnetic materials that can be 
verified by experimental methods. In spin dynamics simulations, classical equations of motion of spin systems are 
solved numerically using well known integrators such as leapfrog, Verlet, predictor-corrector, and Runge-Kutta 
 methods11–13. The accuracy of these simulations depends on a time integration step size. If a large time step is 
used, the accumulated truncation error becomes larger. Conversely, using a short time step is very computation-
ally demanding. So, it is important to find a trade off between speed and accuracy.

Symplectic  methods14,15 are among the most useful time integrators for spin dynamics simulations. The 
numerical solutions of symplectic methods have properties of the time reversibility and the energy conserva-
tion. For example, high order Suzuki–Trotter decomposition method, one of the symplectic methods, allows 
for larger time step with limited error in its computation. In this paper, we seek to enhance the time integra-
tion step of Suzuki–Trotter decomposition method further using Deep Learning techniques. For second-order 
Suzuki–Trotter decomposition method, the integration time step is limited up to τ ∼ 0.04/J and for fourth-order 
Suzuki–Trotter decomposition method, the integration time step is limited up to τ ∼ 0.2/J16.

Recently, Machine Learning techniques are used to enhance simulation efficiencies in the condensed matter 
physics. Its applications include addressing difficulties of phase  transition17–22 and accelerating the Monte-Carlo 
 simulations23. A crucial issue in molecular dynamics  simulations24 is that generating samples from the equilib-
rium distributions is time consuming. Boltzmann generators  machine25 addresses the long-standing rare-event 
(e.g. transition) sampling problem.  In addition, study of quantum many body systems using Machine Learning 
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is applied to simulation of the quantum spin  dynamics26,27, identifying phase  transitions28, and solves the expo-
nential complexity of the many body problem in quantum  systems29.

In this paper, we show that speed up is achieved if we combine spin dynamics simulation and Deep Learn-
ing to learn the error corrections. The first condition for speed up is enough capacity of Deep Learning to learn 
the associations between spin configuration generated by large time steps and spin configuration generated by 
accurate short time steps. The second condition is enough training data for learning and show the Deep Learn-
ing enough pairs of patterns between spin configuration for large and short time steps. We propose to use Deep 
Learning to estimate the error correction terms of Suzuki–Trotter decomposition method, and then add the 
correction terms back to spin dynamics results, making them more accurate. As a result of this correction, larger 
time step can be used for Suzuki–Trotter decomposition method, and corrections can be made for each time 
step. To evaluate our Deep Learning method, we analyze spin-spin correlation as a more stringent measure. We 
also use thermal averages to benchmark the performance of our method. We compare the Deep Learning results 
with those from spin dynamics simulation without Deep Learning for short time steps.

Methods
Heisenberg model. The ferromagnetic Heisenberg model on a cubic lattice is used to demonstrate the effi-
ciency of our method. The Hamiltonian for this model is given as H = −J

∑

<i,j> S
i · Sj , where a vector Si has 

three components (Six , Siy , Siz) and |Si| is a unit vector. We formalize our spin dynamics following the notations of 
Tsai et al.16. We write the equations of motion for all spins as

where σ(t) = (S1(t), S2(t), . . . , Sn(t)) is the spin configuration at time t. The integration of the equations of 
motion in Eq. (1) is done using the second order Suzuki–Trotter decomposition method as in Tsai et al.16. As 
following the mathematical notations of Tsai et al., we decompose the evolution operator R̂ into R̂A and R̂B on 
the sublattices A and B respectively, and obtain

The ferromagnetic Heisenberg model is considered on the cubic lattice of dimensions L × L × L with periodic 
boundary conditions. This model undergoes a phase transition at a temperature kBTc/J = 1.442 . . .30, where kB 
is Boltzmann’s constant. In the spin dynamics approach, the equations of motion for the Heisenberg model is 
governed by the following equation:

Here, H i
eff  is the effective field acting on the ith spin. The k component of the effective field can be specified as 

H
i
eff,k = −

∑

j=nn(i) S
j
k , where the sum runs over the nearest neighbor pairs of sites and k = x, y, and z.

Deep Learning approach. A fully supervised Deep Learning method is developed to perform the spin 
dynamics by using the second order Suzuki–Trotter decomposition method to reduce simulation errors. In 
order to produce training data for our supervised Deep Learning, initial spin configurations are considered at 
ordered, near-critical, and disordered states in the temperature range kBT/J ∈ [0.5, 2.4] and sampling 9.1 × 105 
independent spin configurations using Monte-Carlo simulations with the Metropolis–Hastings  algorithm30–33. 
The initial spin configurations are prepared with 300,000 samples in ordered states, 210,000 samples near criti-
cal states, and 400,000 samples disordered states by simulated annealing method. The temperature annealing 
scheme will be described in more details in the supplementary information. The temperatures for annealing are 
gradually lowered from high to low temperatures and Monte Carlo data are always obtained at equilibrium con-
figurations. For each sampled initial spin configuration σi , two sets of spin dynamics simulations are performed 
with the time steps τ1 = 10−1 and τ3 = 10−3 as illustrated in Fig.  1a. Second-order Suzuki–Trotter method 
uses τ = 0.04 as typical integration time step, so we use τ = 10−3 which would give good accurate simulation. 
For large time step, we tried τ = 10−2 and τ = 10−1 , with our Deep Learning corrections, a large time step of 
τ = 10−1 gives the best speed up with a good accuracy. The spin configuration with time step τ3 = 10−3 needs 
100 time steps of simulations to pair with the spin configuration with one time step τ1 = 10−1 . Formally, we rep-
resent the updated spin configurations σ (10−1)

i  and σ (10−3)
i  by using the Suzuki–Trotter decomposition method as

where σi is an initial spin configuration and D represents the number of training data. The difference between 
spin configuration σ (10−3)

i  generated using τ3 = 10−3 and spin configuration σ (10−1)
i  generated using τ1 = 10−1 

is captured by

(1)
dσ(t)

dt
= R̂σ(t),

(2)e(R̂A+R̂B)τ = eR̂Bτ/2eR̂Aτ eR̂Bτ/2 + O(τ3)

(3)
dSi

dt
= −S

i × H
i
eff =







0 − Hi
eff,z Hi

eff,y

Hi
eff,z 0 − Hi

eff,x

−Hi
eff,y Hi

eff,x 0






S
i = Ri

S
i .

(4)
σ

(10−1)
i ← eR̂Bτ1/2eR̂Aτ1 eR̂Bτ1/2σi , τ1 = 10−1

σ
(10−3)
i ← (eR̂Bτ3/2eR̂Aτ3 eR̂Bτ3/2)100σi , τ3 = 10−3 i = 1, . . .D,

(5)σ
(res)
i = σ

(10−3)
i − σ

(10−1)
i i = 1, . . . ,D ,
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where σ (res)
i  is residue. For our Deep Learning, initial spin configuration σi and spin configuration σ (10−1)

i  are used 
as the inputs into U-Net34, a kind of convolutional neural networks. The U-Net is a proven architecture for image 
segmentation as well as for extracting subtle features. The detailed structure of U-Net is shown in Fig. 1b. The 
architecture of U-net used for 8 × 8 × 8 cubic lattice is that convolutional layers are used as an encoder on left 
upper side followed by a decoder on right upper side that consists of upsamplings and concatenations with the 
correspondingly feature maps from the encoder. We add fully connected layers (FC) in the bottom of the network 
between the encoder and the decoder to efficiently determine particular weights in the feature map from the 
encoder , such as capturing more information of spin-spin interactions. The input channels C are 6 by concatenat-
ing spin coordinates Sx , Sy , and Sz of both σi and σ (10−1)

i  , respectively. The input dimensions of U-Net are reshaped 
to [D, L, L, L, C] as cubic grid vector map, where D is the total number of training data, L is lattice size, and C 
is input channels. The encoder consists of the repeated two convolutional layers with 3 × 3 × 3 filters followed 
by a 2 × 2 × 2 max pooling. We apply a reshaping function to FC with dimensions from [D, L4 × L

4 × L
4 × C4] 

into [D, L4 ,
L
4 ,

L
4 ,C4] . Every step in decoder consists of upsampling layers with a 2 × 2 × 2 filters followed by 

the repeated two convolutional layers with 3 × 3 × 3 filters and copies with correspondingly cropped feature 
maps from encoding layers. The periodic boundary conditions are also applied to the convolutional layers. The 
activation function of the output is a sigmoid for predicting values of residue with [D, L, L, L,Co] dimensions, 
where the number of output channels Co is 3. A simpler U-Net architecture is used for 4 × 4 × 4 cubic lattice 
(see supplementary information).

a

c

b

Figure 1.  Deep learning for Heisenberg model. a Spin configurations for training data preparation. σi is initial 
spin configuration, σ (10−1)

i  is spin configuration after one time step of τ1 = 10−1 from σi , and σ (10−3)
i  is spin 

configuration after 100 time steps of τ3 = 10−3 from σi . σ (res)
i  is residue of σ (10−3)

i  and σ (10−1)
i  . b Illustration of 

the U-Net architecture. Each vertical black line represents a multi-channel feature map. The number of channels 
is denoted on the top of the straight vertical black line and each map’s dimension is indicated on the left edge. 
Vertical dashed black lines correspond on the copied feature maps from each encoder layer. c, A sequence of 
spin dynamics for testing the trained U-Net model: (a) conduct one time step τ1 = 10−1 of spin dynamics 
simulation; (b) use σ (10−1)

i  to predict the spin configuration σ (10−3)
i  by estimating predicted residue σ̂ (res)

i  using 
Eq. (6); Steps (a) and (b) are repeated up to t max time.
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Deployment of our U‑Net for spin dynamics. To deploy the trained U-Net for spin dynamics, spin 
dynamics simulation is carried out with one large time step τ1 = 10−1 and this simulation result σ (10−1)

i  can be 
used to predict σ (10−3)

i  as follows:

where σ̂ (10−3)
i  is the predicted spin configuration for 100 time steps of τ3 = 10−3 and predicted residue σ̂ (res)

i  is 
the correction term by Deep Learning. A sequence of spin dynamics are conducted at τ1 = 10−1 and for each 
step, Eq. (6) is used to perform corrections as shown in Fig. 1c. This new time integration scheme is repeated 
up to maximum time t max . This scheme requires only forward propagation using the GPU implemented with 
TensorFlow  library35, so the computing time is negligible.

normalization of residue. The difference between spin configuration generated with τ3 = 10−3 and that 
generated with τ1 = 10−1 is captured by residue σ (res)

i  in Eq. (5). Let (σ (res)
i )

j
k be the k component of residual spin 

at site j of the lattice, and k denotes x, y, and z components. The values of (σ (res)
i )

j
k can be quite small for some 

simulations, to maintain numerical stability, we normalize these values as follows. Each component (σ (res)
i )

j
k over 

D samples of training data is normalized to a range of [0,1] by fitting to have a Gaussian distribution, and find 
the mean and standard deviation for each k component, respectively.

For lattice size L = 4 , �min = −0.22455 and �max = 0.22455 are defined by taking 11 times the largest stand-
ard deviation of k component. 11 standard deviations translates to a p-value of 1.911 × 10−28 , which ensures 
that during inference, the normalized residue (σ (res)

i )
j
k is always within the range [0,1]. For lattice size L = 8 , 

�min = −0.25472 and �max = 0.25472 are defined by taking 13 times the largest standard deviation of k com-
ponent. Finally, each component (σ (res)

i )
j
k is normalized to the range [0, 1] and guarantee stable convergence of 

weights and biases in Deep Learning as follows :

During the prediction, (σ (res)
i )

j
k from test data is normalized to a range of [0, 1] by using �min and �max , which 

have already been obtained.

Loss function and training. The loss function for one data point of (σi , σ (10−1)
i , σ norm

i ) is the mean-square 
error between the normalized residue σ norm

i  and the predicted normalized residue σ̂ norm
i  and is defined as

where j is the index of lattice sites. The distance function between the jth site of σ norm
i  and the jth site of σ̂ norm

i  is 
the sum of the square difference of all spin components :

where i is the index of training data.

converting σ̂ norm

i

 to σ̂ (res)

i

. For our Deep Learning, inputs into U-Net are obtained initial spin configu-
rations σi and spin configurations σ (10−1)

i  generated by spin dynamics simulations, and output is σ̂ norm
i  . We 

finally predict the spin configuration for 100 time steps of τ3 = 10−3 using trained Deep Learning model as 
σ̂

(10−3)
i = σ

(10−1)
i + σ̂

(res)
i  , where the predicted residue σ̂ (res)

i  can be obtained by the following converting for-
mula as σ̂ (res)

i = σ̂ norm
i (�max − �min) + �min.

Results
The effectiveness of our proposed Deep Learning method is evaluated at kBT/J = 0.4 < kBTc/J  , 
kBT/J = 1.44 ≈ kBTc/J , and kBT/J = 2.4 > kBTc/J . Note that at kBT/J = 2.4 , the system is in a disordered 
state and spatial corrections between spins are very short. One hundred independent spin configurations are 
generated by using Monte-Carlo simulation for use as test data sets at each temperature kBT/J = 0.4 , 1.44, and 
2.4. Second order Suzuki–Trotter decomposition methods are used for all experiments in this paper.

To evaluate the accuracy of simulation results, correlation is investigated by comparing spin dynamics trajec-
tory σ(t) with highly accurate spin dynamics trajectory ρ(t) performed with τ = 10−6 . τ = 10−6 is used as the 
reference time step as we found that it can give accurate trajectories. Correlation ξ(t) as function of time t in 
which σ(t) and ρ(t) are compared is given by

(6)σ̂
(10−3)
i = σ

(10−1)
i + σ̂

(res)
i ≃ σ

(10−3)
i ,

(7)(σ norm
i )

j
k =

(σ
(res)
i )

j
k − �min

�max − �min
(k = x, y, z, i = 1, ...D).

(8)L(σi , σ
(10−1)
i , σ norm

i ) =
1

L3

L3
∑

j=1

∥

∥(σ norm
i )j − (σ̂ norm

i )j
∥

∥

2

2
,

(9)
∥

∥(σ norm
i )j − (σ̂ norm

i )j
∥

∥

2

2
=

∑

k=x,y,z

(

(

σ norm
i

)j

k
−

(

σ̂ norm
i

)j

k

)2
,

(10)ξ(σ , t) =
1

L3

L3
∑

j=1

[(ρj(t))x(σ
j(t))x + (ρj(t))y(σ

j(t))y + (ρj(t))z(σ
j(t))z],
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where index j denotes lattice site of spins, L is the linear dimension of the lattice, and L3 is total number of 
spins at lattice sites. Since the initial spin configurations are the same, ρ(0) is identical to σ(0) . We compute one 
hundred correlation ξ(σi , t) for spin configurations σi(t) , where i is from 1 to 100. Then, we also estimate the 
mean of correlation µξ(t) and the standard deviation of correlation std(ξ(t)) of ξ(σi , t) as a function of time at 
each temperature.

Suzuki–Trotter decomposition method provides important properties such as conservation of energy 

e = −L−3
∑L3

<i,j> S
i · Sj and magnetization m = L−3

√

(
∑

i S
i
x

)2
+

(

∑

i S
i
y

)2
+

(
∑

i S
i
z

)2 , and time reversibility. 
We wish to compare the conservation of energy and magnetization across one hundred samples, but their starting 
spin configurations are different. In order to take statistics across the samples, we shift the energy and magnetiza-
tion of the initial spin configurations to zero. Eq. (11) and Eq. (12) show how we shift the energy per site e(t) and 
magnetization per site m(t) at each time step t. Here, Q represents the number of samples at each temperature. 
We use Q as one hundred.

(11)ẽi(t) = ei(t) − ei(0) i = 1, . . . ,Q
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Figure 2.  Spin-spin correlation using reference trajectory generated at τ = 10−6 . Analysis of the mean of 
correlation µξ(t) as a function of time on 4 × 4 × 4 cubic lattice at a, kBT/J = 0.4 , b, kBTc/J ≈ 1.44 , and 
c, kBT/J = 2.4 and those on 8 × 8 × 8 cubic lattice at d, kBT/J = 0.4 , e, kBTc/J ≈ 1.44 , and f , kBT/J = 2.4 . 
Blue line presents the Deep Learning (DL) result while black line, yellow line, and red line are the simulation 
results for τ = 10−1 , τ = 10−2 , and τ = 10−3 , respectively. Especially, at kBT/J = 1.44 and kBT/J = 2.4 , green 
line and violet line show the simulation results for τ = 10−4 and τ = 10−5 , respectively. g Threshold time tthres as 
function of temperature. Filled rhombi (  ) represents the Deep Learning result while filled black triangles(� ), 
filled yellow circles (  ), filled red squares (  ), filled green inverted triangles (  ), and filled violet pentagons (  )  
are the simulation results without DL corrections for τ = 10−1 , τ = 10−2 , τ = 10−3 , τ = 10−4 , and τ = 10−5 , 
respectively.
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With the shifting of energy and magnetization, we can compute the mean of absolute energy per site µ|ẽ(t)| , the 
mean of absolute magnetization per site µ|m̃(t)| , standard deviation of energy per site std(ẽ(t)) , and standard 
deviation of magnetization per site std(m̃(t)) over independent samples.

In Fig. 2, the spin-spin correlation plots are shown as using reference trajectory generated at the reference 
time step τ = 10−6 for kBT/J = 0.4 (kBT/J < kBTc/J) [Fig. 2a,d], kBT/J = 1.44 (kBT/J ≈ kBTc/J) [Fig. 2b,e], 
and kBT/J = 2.4 (kBT/J > kBTc/J) [Fig. 2c,f]. At kBT/J < kBTc/J , correlations remain high (red line, yellow 
line, and blue line) except for at τ = 10−1 without Deep Learning corrections (black line), where correlation 
drops around t = 2 . This is due to accumulation of errors for large time steps. Correlation is recovered with 
Deep Learning corrections (blue line). Indeed correlations of τ = 10−1 with Deep Learning corrections are as 
good as for τ = 10−2 without Deep Learning corrections (yellow line), demonstrating a ∼ 10 times speed up. At 
kBT/J ≈ kBTc/J and kBT/J > kBTc/J , spin-spin correlation drops faster than kBT/J < kBTc/J even for short 
time steps, τ = 10−4 (green line) and τ = 10−5 (violet line), due to disorder in the spin lattices.

(12)m̃i(t) = mi(t) − mi(0) i = 1, . . . ,Q
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Figure 3.  Conservation of energy and magnetization on 4 × 4 × 4 cubic lattice. Predictions of the mean 
of absolute energy per site µ|ẽ(t)| , standard deviation of energy per site std(ẽ(t)) , the mean of absolute 
magnetization per site µ|m̃(t)| , and standard deviation of magnetization per site std(m̃(t)) as a function of time 
at a, kBT/J = 0.4 , b, kBTc/J ≈ 1.44 , and c, kBT/J = 2.4 . Black line, yellow line, and red line represent data 
obtained from spin dynamics simulations with τ = 10−1 , τ = 10−2 , and τ = 10−3 , respectively, while blue line 
represents data from Deep Learning (DL) correction.
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We define threshold time tthres as the average time required for spin-spin correlation µξ(t) to drop from 1 
to 0.99. In Fig. 2g, the plot of tthres as a function of temperature kBT/J has the logarithmic scale on the y-axis, 
and simulations for τ = 10−3 have higher threshold time (red squares) at each temperature than for τ = 10−1 
without Deep Learning corrections. Threshold time (filled blue diamonds) for τ = 10−1 with Deep Learning 
corrections approaches to almost the same threshold time (yellow circles) for τ = 10−2 without Deep Learning 
corrections at each temperature.

Figure 3 ( L = 4 ) and Fig. 4 ( L = 8 ) show µ|ẽ(t)| , std(ẽ(t)) , µ|m̃(t)| , and std(m̃(t)) as a function of time at 
kBT/J = 0.4 (kBT/J < kBTc/J) [Figs.  3a and  4a], kBT/J = 1.44 (kBT/J ≈ kBTc/J) [Figs.  3b and  4b], and 
kBT/J = 2.4 (kBT/J > kBTc/J) [Figs. 3c and 4c]. For time steps τ = 10−2 (yellow line) and τ = 10−3 (red 
line), conservation of both energy and magnetization is good, as shown by the relatively constant mean plots 
( µ|ẽ(t)| and µ|m̃(t)| ) and small standard deviations (std(ẽ(t)) and std(m̃(t)) ) across independent simulations. At 
kBT/J < kBTc/J and kBT/J ≈ kBTc/J , both energy and magnetization are not conserved in simulations without 
Deep Learning corrections for time step τ = 10−1 (black line). On the other hand, conservation is recovered 
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Figure 4.  Conservation of energy and magnetization on 8 × 8 × 8 cubic lattice. Predictions of µ|ẽ(t)| , std(ẽ(t)) , 
µ|m̃(t)| , and std(m̃(t)) as a function of time at a, kBT/J = 0.4 , b, kBTc/J ≈ 1.44 , and c, kBT/J = 2.4 . Black line, 
yellow line, and red line represent data obtained from spin dynamics simulations with τ = 10−1 , τ = 10−2 , 
and τ = 10−3 , respectively, while blue line represents data from Deep Learning (DL) correction. These figures 
show that the effect of averaging over disordered spins for L = 8 is stronger than for L = 4 above the critical 
temperature kBTc/J.
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using Deep Learning corrections (blue line). In Fig. 3c, at kBT/J > kBTc/J , the system is disordered and the 
mean of absolute energy µ|ẽ(t)| and the mean of absolute magnetization µ|m̃(t)| become more constant, simply 
due to averaging of disordered spins. Especially, Fig. 4c shows that at kBT/J > kBTc/J , the effect of averaging 
over disordered spins for L = 8 is stronger than for L = 4 . At high temperature, the number of possible states 
increase exponentially and hence fitting by Deep Learning corrections is more difficult.

Discussion
Our results have demonstrated that the Deep Learning corrections enhance the time integration step of the 
original Suzuki–Trotter method and have achieved ∼ 10 times computational speed up while maintaining accu-
racy compared to the original Suzuki–Trotter decomposition method. The nature of local nearest neighbours 
interactions in the lattice means that convolutional structure of the Deep Neural Network is a nature choice 
of network architecture. Since convolution is translationally invariant, the effect of lattice size on training our 
U-Net is not a major concern. For example, between L = 4 and L = 8 lattices, the time required for training the 
U-Net parameters increases by about 4 times, which is sub-linear with respect to the number of lattice sites. Our 
Deep Learning was trained on simulation data at τ = 10−3 , however its accuracy performance is equivalent to 
simulation data at τ = 10−2 . This shows that our Deep Learning training has not reached its theoretical limit 
of a perfect prediction. This theoretical limit can be achieved exactly if we train on an infinite amount of data 
for an infinite capacity. In practise, Deep Learning methods can not be perfect because the amount of data and 
the capacity of U-Net are finite. The main source of inaccuracies in our Deep Learning method is that U-Net’s 
output does not fit exactly the labeled data generated at τ = 10−3 and that even if U-Net is able to fit the data it 
has through training, it may not predict perfectly on the data it has never seen in training. For future work, we 
will explore the effects of Deep Learning corrections on higher order Suzuki–Trotter decomposition. We will 
also apply Deep Learning corrections such as off lattice systems and integrators such as velocity-verlet.

Data availability
The data and code that support the findings of this study are available from corresponding authors upon request.
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