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Abstract

Asians are underrepresented across many omics databases, thereby limiting the potential of precision medicine in nearly 60% of the
global population. As such, there is a pressing need for multi-omics derived quantitative trait loci (QTLs) to fill the knowledge gap of
complex traits in populations of Asian ancestry. Here, we provide the first blood-based multi-omics analysis of Asian pregnant women,
constituting high-resolution genotyping (N = 1079), DNA methylation (N = 915) and transcriptome profiling (N = 238). Integrative
omics analysis identified 219 154 CpGs associated with cis-DNA methylation QTLs (meQTLs) and 3703 RNAs associated with cis-RNA
expression QTLs (eQTLs). Ethnicity was the largest contributor of inter-individual variation across all omics datasets, with 2561 genes
identified as hotspots of this variation; 395 of these hotspot genes also contained both ethnicity-specific eQTLs and meQTLs. Gene
set enrichment analysis of these ethnicity QTL hotspots showed pathways involved in lipid metabolism, adaptive immune system
and carbohydrate metabolism. Pathway validation by profiling the lipidome (∼480 lipids) of antenatal plasma (N = 752) and placenta
(N = 1042) in the same cohort showed significant lipid differences among Chinese, Malay and Indian women, validating ethnicity-QTL
gene effects across different tissue types. To develop deeper insights into the complex traits and benefit future precision medicine
research in Asian pregnant women, we developed iMOMdb, an open-access database.

Introduction
Genome-wide association studies (GWAS) have helped
identify associations between thousands of genetic
variants with various diseases and traits (1). The
molecular aetiologies of these phenotypes are further
enhanced with molecular quantitative trait loci (QTL),
linking molecular traits with phenotypes sharing genetic
associations. In particular, genetic associations with gene
expression and DNA methylation provide useful insight
in understanding the linkage of susceptibility variants
and their related genes and cell-specific regulatory
elements (2). Spearheaded by international consortia
such as ENCODE (3), NIH Epigenome RoadMap (4) and

Genotype-Tissue Expression (GTEx) (5), the integration
of genetic risk alleles to gene expression and DNA
methylation profiles provides baseline references for
DNA methylation and expression profiles across differ-
ent tissues. Clinical insights derived from these stellar
advancements in scientific knowledge are unfortunately
limited by a Eurocentric bias (6) which may exacerbate
the prediction of health disparities for individuals not of
European descent (7). Furthermore, integrative analyses
of two or more omics platforms from the same set of
samples and tissue type can augment understanding
of the interplay of molecular interactions far beyond
the potential of single biomolecule databases (8). For
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example, integration of SNP, DNA methylation and
mRNA expression in peripheral blood mononuclear
cells provided novel insights into DNA methylation-
mediated regulation effects (9). Assimilation of SNPs,
RNA, DNA methylation and histone variation between
distinct primary immune cell lineages yielded specific
regulatory circuitry, allowing for high potential targets
for experimental validation and mechanistic insight (10).
Knowledge harvested from such integrative analyses can
help improve precision medicine practices (11), refine
pharmaceutical efficacies (12) and enhance disease
prediction models (13).

Here, we provide iMOMdb, a multi-omics database of
pregnant women with three predominant ethnicities
of Asian ancestry, i.e. Chinese, Malay and Indian. This
database provides genome-wide profiles of integrative
results of meQTLs and eQTLs, as well as a suite of
biomarkers differentiating these ethnic groups, including
SNPs, CpGs and RNA transcripts.

Results
Generation of multi-omics data and its
benchmarking with established resources
In this study, we generated the multi-omics data from
maternal antenatal blood samples collected at middle
gestation in the GUSTO cohort (Fig. 1A, Supplementary
Material, Fig. S1). The studied datasets included subject
genotypes, DNA methylation and gene expression pro-
files. Genotypes of 1079 mothers were profiled using the
Illumina Omniexpress + exome arrays. Quality control
(QC) analysis yielded 629 493 SNPs from the arrays, and
an additional 6 978 879 SNPs were imputed. DNA methy-
lation profiles were generated (N = 915) using the Illu-
mina Infinium MethylationEPICMethylationEPIC arrays,
and 422 788 CpGs passed the QC (Supplementary Mate-
rial, Fig. S2A). Likewise, whole genome transcriptomics
was performed on the maternal whole blood samples
from 238 subjects and 15 937 RNA transcripts passed
QC (Supplementary Material, Fig. S2B). The ethnic break-
down of various omics platforms is provided in Table 1.

We benchmarked our omics results against various
major public data repositories. Genetic variants common
between GUSTO and 1000 Genomes datasets showed
genotypes of GUSTO Malays to lie between GUSTO
Chinese and GUSTO Indians, though they were more
closely related to the East Asians than South Asians
(Fig. 1B, Supplementary Material, Fig. S3A). This result
is also in alignment with a recent population study
on genetic profiles in Singapore (14). Benchmarking
of DNA methylation data with Epigenome Roadmap
Project samples analyzed using reduced representation
bisulfite sequencing (RRBS) (4) identified tissue-specific
clustering, with the GUSTO maternal buffy coat samples
clearly clustered within the rest of the blood samples
available under the Epigenome Roadmap data (Fig. 1C).
Lastly, comparison of GUSTO RNAseq transcriptomics
data against the Genotype Tissue Expression Project

(GTEx v8) (15) showed a strong overlap with the other
whole blood samples from the GTEx dataset (Fig. 1D,
Supplementary Material, Fig. S3B). Figure 1E explains
cis-DNA methylation QTL and expression QTL (meQTL
and eQTL) identified in the subsequent analysis. Also,
Supplementary Material, Table S1 provides a dictionary
of molecular terms used in the subsequent results.

Cis-meQTL characteristics
From the 915 GUSTO subjects with both genotype and
DNA methylation data, 219 154 of 422 788 CpGs (51.8%)
showed significant association (adjusted P-value < 0.05),
with a cis-SNP within 1 million base pairs of the same
chromosome (Table 2). In general, associations of the
CpG to SNP were more significant and stronger the
closer the two were (Fig. 2A and B). Altogether, 75.3% of
all 6 891 829 analyzed SNPs were meQTLs. Our results
also revealed 22.7% of SNPs to be located within the
same gene region of their related CpGs. Of the remaining
meQTLs, 24.6% were intergenic and 52.7% were in
a different gene region than the related CpGs. CpGs
associated with meQTLs appear to be enriched in
promoter and intergenic regions and depleted in genic
regions such as exons and introns (Fig. 2E); 23 011 genes
contained at least one CpG associated with at least one
meQTL, which we termed as meGenes.

Cis-eQTL characteristics
There were 233 GUSTO mothers with both genotyping
and RNA sequencing data available. Of the 15 937
transcripts that passed the QC, 3703 (23.2%) were
significantly associated with a cis-SNP within 1 million
base pairs of the same chromosome (Table 2). Most of
these transcripts were protein coding (78.8%), while
the rest included long non-coding (14.0%), pseudogenes
(6.5%) and small non-coding (0.7%) RNAs. RNAs associ-
ated with eQTLs appear depleted in small non-coding
regions (Fig. 2F). Of the 6 790 080 SNPs analyzed with
respect to cis-eQTLs, only 5.0% were eQTLs; 20.7% of
eQTLs were in the same gene region of the related
transcripts, 18.7% were intergenic and 60.6% were in
different gene regions. A similar analysis was performed
using GTEx v7 whole blood eQTL data sheet (Whole_
Blood.v7.signif_variant_gene_pairs.txt.gz from https://
gtexportal.org/home/datasets) and found that the rates
of GTEx eQTL in the same gene, intergenic region and
different gene region were 17, 17 and 66%. Similar to
the relationship of CpGs with their meQTLs, transcript
and eQTLs were generally more significant and stronger
the closer the two were (Fig. 2C and D); 3703 transcripts
contained at least one eQTL, which we termed as
eGenes. A large proportion of eGenes (2904, 78.4%,
Supplementary Material, Fig. S2G) were also meGenes.

Ethnic variation across multi-omics platforms
Genetic ancestry is closely associated with ethnicity
and hence plays an important role in differentiat-
ing disparate health outcomes between populations.
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Figure 1. Study overview. (A) Graphical overview of integrative omics analysis and the iMOMdb database developed in this study. QR code included
provides easy access to the database. (B) Benchmarking of GUSTO genotypes against the 1000 Genomes study. Scatterplot represents the 1st and
2nd principal components generated from 221 278 genetic variants merged from 1079 GUSTO maternal genotypes and 1000 Genomes (http://www.
internationalgenome.org/). GUSTO Chinese and GUSTO Indians overlapped with East Asians and South Asians, respectively. GUSTO Malays formed a
distinct cluster between the Chinese and Indian ethnicities but were relatively closer to East Asians. (C) Benchmarking of GUSTO transcriptomics data
against GTEx data. Scatterplot represents the 1st and 2nd principal components generated from the merged transcriptomics data from 238 GUSTO
maternal blood samples and the GTEx data available from 7567 samples covering 8 different tissue types. PCA plot shows a strong convergence between
transcription profiles of GUSTO maternal blood with GTEx whole blood samples. (D) Benchmarking of DNA methylation data generated from GUSTO
blood samples against the Epigenome Roadmap project data. The dendrogram plot shows the relationship between DNA methylation levels of CpGs
profiled using EPIC arrays from 915 maternal buffy coat samples and different adult-tissue samples profiled under the Epigenome Roadmap using the
RRBS method. DNA methylation profiled from GUSTO maternal blood samples clustered closely with the RRBS profiles from the blood samples available
within the Roadmap dataset. (E) Schematic explaining cis-DNA methylation QTL and expression QTL (meQTL and eQTL) identified in this study.
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Table 1. Summary of samples and omics analysis used in this study

Omics Tissue type Method Before QC After QC Number of
subjects (Chinese/
Malay/Indian)

Pregnancy
(26-28th week)

Genomics Buffy coat Illumina OmniExpress +
exome array

933 886 SNPs 629 493 SNPs 1079 (615/268/196)

Imputed SNPs ∼85 M imputed
SNPs

6 978 879 SNPs

Epigenomics Buffy coat Infinium MethylationEPIC
Kit (EPIC 850)

866 091 CpGs 422 788 CpGs 915 (531/213/171)

Transcriptomics Whole blood Whole transcriptomic,
Illumina HiSeq 4000,
100 bp paired end platform

57 905 Transcripts 15 937 Transcripts 238 (146/48/44)

Lipidomics Fasting plasma Liquid chromatography –
Mass spectrometry
(LC–MS/MS)

694 Lipid species 480 Lipid species 752 (400/198/154)

Delivery Lipidomics Placenta
(maternal facing)

Liquid chromatography –
Mass spectrometry
(LC–MS/MS)

634 Lipid species 483 Lipid species 1042 (641/204/197)

Table 2. Statistical summary of eQTL and meQTL analysis

meQTLs eQTLs

Data
no. of subjects 915 233
no. of CpGs 422 788 15 937
no. of SNPs 6 891 829 6 790 080

Covariates estimated cell types, ethnicity,
maternal age and batches

estimated surrogate variable and
ethnicity

Criteria FDR P-value < 0.05, corresponding to
P-value (median [max, min]) = 1.3 ×
10-9 [9.2 × 10-3, 2.2 × 10-308]

FDR P-value < 0.05, corresponding to
P-value (median [max, min]) = 9.5 ×
10-9 [1.8 × 10-3, 6.7 × 10-103]

QTLs 5 190 971 SNPs 337 894 SNPs
Related genomic feature 219 154 CpGs associated with at least

one meQTL; 23 011 meGenes
3703 transcripts associated with at
least one eQTL; 3703 eGenes

Expectedly, principal components derived from genetics
data showed clear segregations by ethnicity in this
study (Fig. 3A). Principal components obtained from
both DNA methylation and RNA transcript were also
able to distinguish between the ethnicities (Fig. 3B and
C). Ethnicity also remained the largest contributor of
the recorded demographic and clinical variation in
DNA methylation (1.1%) and transcriptomics (1.8%),
respectively; well ahead of the second highest contrib-
utor of clinical variation (maternal age, 0.5% in DNA
methylation; pre-pregnancy body mass index (BMI),
0.7% in transcriptomics, respectively; Supplementary
Material, Fig. S4). Since ethnicity was the strongest
contributor of inter-individual variation in the multi-
omics data, we decided to explore it as a dependent
variable in the subsequent analyses.

In the ethnicity specific analyses, genetic data from
GUSTO mothers (615 Chinese, 268 Malay, 196 Indian), 28%
(about 1.9 million) of the profiled SNPs had an FSTvalue
of > 0.05 (outermost track of the Circos plot in Fig. 3D
and bar plot in Fig. 3E). These SNPs mapped to 30 350
unique genes (Fig. 3D, outermost track of the Circos
plot, Supplementary Material, Fig. S5, left column).

Additionally, almost all (99.9%) of these SNPs passed
ethnicity-based GWAS sensitivity analysis (adjusted P-
value ≤ 0.05).

In context of DNA methylation, of the 422 788 CpGs
from 915 GUSTO mothers (531 Chinese, 213 Malay, 171
Indian), 67 049 CpGs (15.9%) were significantly associated
(Bonferroni P-value < 0.05) with ethnicity (Fig. 3D, second
track of the Circos plot), corresponding to 14 629 unique
genes (Supplementary Material, Fig. S5, middle column).
Similar analysis targeting the transcriptomics data of
the 15 937 RNA transcripts from 238 GUSTO mothers
(146 Chinese, 48 Malay, 44 Indian) identified 4433 tran-
scripts (27.8%) to be significantly associated (adjusted
P-value < 0.05) with ethnicity (third track of the Circos
plot in Fig. 3D, Supplementary Material, Fig. S5, right
column), corresponding to the same number of unique
genes (4433). Altogether, 2561 genes shared significant
associations with ethnicity across all three omics plat-
forms, i.e. carry at least one SNP, CpG and RNA transcript
significantly associated with ethnicity (innermost track
of the Circos plot in Fig. 3D, Supplementary Material,
Table S2). We defined these overlapping genes as the
ethnicity specific hotspot genes.
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Figure 2. meQTL and eQTL characteristics. (A–D) Cloud scatter plot showing the relationship between association tests (P-value and normalized effect
size) and cis-distances in base pairs. Closer the SNP is to the transcript/CpG, better is the associations in P-values and absolute normalized effect sizes.
For 422 788 CpGs that passed QC, 219 154 CpGs passed FDR P-value < 0.05 in cis-meQTL mapping, and for the 15 937 transcripts that passed QC, 3703
transcripts passed FDR P-value < 0.05 in cis-QTL mapping. (A) Density plot of –log10 (P-value) of SNP-CpG association and the distance between them in
meQTL mapping. (B) Density plot of absolute values of effect sizes and the SNP to CpG distance in meQTL mapping. (C) Density plot of –log10 (P-value) of
SNP-Transcript association and the distance between them in eQTL mapping. (D) Density plot of absolute values of effect sizes and the SNP to transcript
distance in eQTL mapping. (E) CpGs were classified based on where they lie with respect to various gene features and the proportion of CpGs which
associate with meQTLs per gene feature is represented as barplots. The mean proportion of all CpGs found to associate with meQTLs is represented
by a red dotted line, whereas an asterisk suffix indicates gene feature labels that were observed to be significantly different in the chi-square test.
(F) Transcripts were classified based on their general annotation and the proportion of transcripts associated with eQTLs per annotation is represented
as barplots. The mean proportion of all transcripts found to associate with eQTLs is represented by a red dotted line, whereas an asterisk suffix indicates
gene feature labels that were observed to be significantly different in the chi-square test. (G) meGenes, genes which contain an associated meQTL, are
parsed into different expression annotations (shades of yellow) alongside eGenes—genes which contain an associated eQTL (shades of green). The Venn
diagram describes the relationship between the genes found distinct and common between meGenes and eGenes. The table below the barplots and
Venn diagram describes the numerical breakdown of expression annotations of meGenes, the intersection between meGenes and eGenes, and eGenes.
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Figure 3. Ethnic variation across different omics datasets. (A) Scatter plot of 1st and 2nd principal components of 111 813 SNPs after LD pruning using
imputed SNPs from 1079 subjects. (B) Scatter plot of 4th and 5th principal components of 422 788 CpGs from 915 subjects. (C) Scatter plot of 9th and
11th principal components of 15 937 transcripts from 238 subjects. Blue, green and dark orange dots indicate Chinese, Malay and Indian ethnicity,
respectively. (D) Circos plot where outer most track shows SNPs that passed genome-wide significance for ethnicity at FST > 0.05, 2nd track shows CpGs
that passed epigenome-wide significance for ethnicity analysis at FDR < 0.05, 3rd track shows transcripts that passed transcriptome-wide significance
for ethnicity at FDR < 0.05 and 4th track shows all 2561 ethnicity hotspot genes (as indicated by red lines). Inner most track contains a pie chart of N = 395
of ethnicity QTL hotspots genes and N = 520 of non-QTL ethnicity hotspots genes. (E) Bar plot inset showing percentage of SNPs, CpGs and transcripts
that were ethnicity specific.

Ethnicity hotspot genes
We further divided the 2561 ethnicity hotspot genes into
sub-groups based on their association with different
QTLs. Ethnicity eGenes were defined as genes related

to ethnicity eQTL and its RNA expression also demon-
strated ethnic differences. Similarly, ethnicity meGenes
were defined as genes related to ethnicity meQTL and its
DNA methylation also demonstrated ethnic differences.
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As such, four subgroups could be differentiated based
on the permutation of ethnicity eGenes and ethnicity
meGenes (Fig. 3D).

The first sub-group, termed as the ethnicity QTL
hotspots, comprised of 395 out of 2561 (15%) ethnicity
hotspot genes that were both meGenes and eGenes. The
top three biological ontologies identified from gene set
enrichment analysis (GSEA) of these 395 ethnicity QTL
hotspot genes included metabolism of lipids (adjusted
P-value 4.18 × 10−6), adaptive immune system (adjusted
P-value = 9.53 × 10−3) and metabolism of carbohydrates
(adjusted P-value = 1.07 × 10−2).

The second sub-group comprised of 520 out of 2561
(20%) ethnicity hotspot genes that did not overlap with
the ethnicity eGenes or meGenes and were hence termed
as non-QTL ethnicity hotspot genes. GSEA analysis iden-
tified these genes to be enriched in adaptive immune sys-
tem (adjusted P-value = 1.17 × 10−8), cell cycle (adjusted
P-value = 1.24 × 10−7) and cytokine signaling in immune
system (adjusted P-value = 2.30 × 10−7) pathways.

The third sub-group comprised of 45 ethnicity hotspot
genes that were eGenes but not meGenes (2%), and
the fourth subgroup consisted of 1601 hotspot genes
that were only meGenes (63%). The ethnic variation in
these subgroups of genes may arise due to cell-type or
epigenetic regulation-specific regulatory mechanisms
(Figure 3D, pie chart, third and fourth groups collectively
reported under ‘others’).

Validation of top biological pathways highlighted
by ethnicity QTL hotspots using lipidomics
The most significant gene set enrichment observed from
ethnicity QTL hotspot genes was the metabolism of
lipids (Fig. 4A). As such, we interrogated various lipid
species using LC–MS/MS on fasting plasma samples
of 752 GUSTO mothers to investigate whether our
ethnicity QTL findings translated onto biochemical
phenotypic differences; 400 of the profiled 480 (83.33%)
lipid species passed the adjusted P-value ≤ 0.05 with
respect to ethnicity, with the three most significant
lipids belonging to alkenylphosphatidylethanolamine
species [PE(P-18:1/20:5) at adjusted P-value = 2.65 × 10−50,
PE(P-18:1/22:6) P-value = 5.04 × 10−49 and PE(P-18:0/20:5)
P-value = 6.22 × 10−43] (Supplementary Material, Table
S3). Principal component analysis (PCA) analysis of the
plasma lipidome also reflected distinct ethnic separation
in maternal blood lipid profiles (Fig. 4B).

We were further interested to investigate if the inter-
ethnic differences in the lipid profiles extended beyond
maternal circulation and influenced their supply to the
fetus through placenta. For this, we interrogated 483 lipid
species in the maternal-facing placental samples of 1042
GUSTO mothers (Fig. 4C, and Supplementary Material,
Table S4). Almost 75% (360 out of 483) of the interro-
gated lipid species passed false discovery rate (FDR)
adjusted P-value < 0.05, with the strongest associations
including phospholipids such as the phosphatidylcholine
PC(18:0_22:5) (adjusted P-value =1.17 × 10−45), phos-
phatidylethanolamines PE 38:5 P-value = 1.11 × 10−44 and

PE(18:0_22:5) P-value = 7.21 × 10−43. Similar to antenatal
plasma, PCA analysis of the placental lipidome also
identified ethnic variation, with Indians showing more
separation from Chinese and Malay.

iMOMdb resource and features
Recognizing the importance and uniqueness of our
multi-omics data from an Asian cohort, we developed
a comprehensive online database iMOMdb of the results
highlighting significant genes and variants (SNPs, CpGs,
RNA transcripts, eQTLs and meQTLs), associated with
ethnicity. For SNPs, FSTinformation and donut plots indi-
cating the inter-ethnic proportions of genetic variants are
provided. For DNA methylation and gene expression data,
P-values and boxplots depicting the ethnicity differences
are shown. Lastly, for meQTLs and eQTLs, associations
of a CpG or transcript with a SNP along with their
FDR/Bonferroni correction thresholds and whether they
associate with ethnicity or not are provided.

User interface

The web-based interface of iMOMdb is accessible
through https://imomdb.karnanilab.com/imomdb and
allows users to browse, search, visualize and download
data and information pertaining to multi-omics plat-
forms and ethnic variants identified in this study).

Search and Charts module

The user-friendly data repository of iMOMdb, provides a
comprehensive overview of the multi-dimensional omics
data to investigate various variants and their prevalence
in Asian pregnant women. To demonstrate and highlight
the features of iMOMdb, we use FADS2, a gene coding for
fatty acid desaturase and also one of the 395 ethnicity
QTL genes found in our study as an example (Fig. 5).
Genetic variants in FADS2 and other fatty acid desaturase
genes mapping to 11q12-q13.1 region of chromosome 11
are known to contribute to differences in the polyun-
saturated fatty acids (PUFAs) across different popula-
tions of Chinese and European ancestry (16–19). FADS2
SNP variants are also known to have cis-effects on gene
expression and DNA methylation levels (20).

In our dataset, the FST score of 0.286 of FADS2 genetic
variant rs174577 indicates substantial differences in
the allele frequencies of rs174577 SNP across the
three ethnicities. Compared with Indian, Chinese and
Malay had a higher frequency of the altered allele ‘A’
than the reference allele ‘G’ (Fig. 5A). Correspondingly,
EWAS and transcriptome-wide association study (TWAS)
analysis also found the DNA methylation at cg13764085
and expression of FADS2 transcript (ENSG0000134824)
differed by ethnicity (Fig. 5B and C). QTL analysis
showed DNA methylation at cg13764085 linked to meQTL
rs174577 and differed by ethnicity (Fig. 5D and E).
Likewise, gene expression of FADS2 on ENSG0000134824
was linked to eQTL rs174577 (Fig. 5F) and variable cross
the three ethnicities (Fig. 5G).
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Figure 4. Ethnicity QTLs and enriched gene networks. (A) Metabolism of lipids, adaptive immune response and metabolism of carbohydrates pathways
were the top 3 gene sets (FDR < 0.05) identified in the GSEA of 395 ethnicity QTL hotspot genes using REACTOME. Circos plot provides the chromosome
number and name of the ethnicity QTL genes belonging to these 3 gene sets. Color coding of the gene names corresponds to the color coding of the
text representing top 3 gene sets in the inset. (B) PCA plot of 480 lipid species measured in maternal blood plasma (N = 752) during mid gestation. (C)
483 lipid species from 1042 maternal side facing placenta samples. PCA plots were colored based on ethnicity where blue, green and dark orange dots
indicate Chinese, Malay and Indian subjects, respectively.

Discussion
Our study integrated multiple omics data, including
genomics, epigenomics and transcriptomics, functionally
validating gene set enrichments through lipodomic
analyses of two different tissue types in an Asian cohort
of pregnant women. This integrative approach to study

human variation is powerful and has the potential to
develop deeper insights into complex traits.

We not only observed genetic diversity in the studied
subject pool but also identified genetic variants that
can potentially alter the DNA methylation (meQTL) and
RNA expression (eQTL) status of a gene. Specifically,
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Figure 5. iMOMdb web-based features. iMOMdb includes eQTLs, meQTLs and ethnicity associated SNPs, CpGs and transcripts identified in this study.
Data visualization available under iMOMdb is shown in A–E by using FADS2 gene locus as an example. (A) Donut plot showing allele frequency percentage
for FADS2 SNP rs174577 within each ethnic group. (B) Boxplot of association between CpG cg13764085 and ethnicity (C) Boxplot of association between
ENSG00000134824 transcript and ethnicity. (D) Boxplot of association between CpG cg13764085 and SNP rs174577. (E) Boxplot of association between
CpG cg13764085 and SNP rs174577 segregated by Chinese, Malay and Indian ethnicity. (F) Boxplot of association between ENSG00000134824 transcript
and SNP rs174577. (G) Boxplot of association between ENSG00000134824 transcript and SNP rs174577 segregated by Chinese, Malay and Indian ethnicity.

we identified 23 011 meGenes that carry CpGs whose
methylation status is influenced by cis-genetic variants,
and likewise 3703 eGenes whose transcription is regu-
lated by a cis-genetic variant. A large proportion (78%)
of eGenes identified in our study were also meGenes

thereby surfacing genetic variants in Asian population
that may simultaneously affect multiple molecular phe-
notypes and perhaps also share biological mechanisms
by which the causal variant influences both expres-
sion and methylation of the same gene. For example,
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methylation could either respond to genetically deter-
mined variation in gene expression or it could medi-
ate the effects of the SNP on expression (e.g. increased
promoter methylation suppresses transcription factor
binding).

Among the demographic and clinical phenotypes
assessed in this study, ethnicity was the major con-
tributor of inter-individual variation in all the omics
datasets interrogated. There were ∼2 million SNPs, 67
thousand CpGs and over 4 thousand RNA transcripts
that were significantly different between the three Asian
ethnic groups. These genomic loci with significant ethnic
differences mapped to 2561 unique genes, which we
termed as ethnicity hotspots; 395 of these ethnicity
hotspot genes also possessed the whole repertoire
of ethnicity-associated SNPs, CpGs, RNA transcripts,
meQTLs and eQTLs—which we termed as ethnicity QTL
hotspot genes. These ethnicity QTL hotspot genes were
significantly enriched in biomolecular pathways, the
most significant being metabolism of lipids.

Validating these purported ethnic specific differences
in lipid metabolism using lipidomics platform on both
antenatal plasma as well as placental tissue, our find-
ings provide evidence that associations arising within
multi-omics datasets such as our own could enhance
functional outcomes that may extend beyond tissue-
specific findings. Our observation on ethnic differences
to be prevalent even in placenta provides new insights
into the potential differences in the materno-fetal lipid
crosstalk. Given the high potential of our dataset for both
discovery analysis and validation of molecular pheno-
types by other cohorts, we release the first version of the
iMOMdb, an integrative multi-omics database, aggregat-
ing five important components, cis-eQTL, cis-meQTL and
ethnicity-related SNPs, CpGs and transcripts from our
cohort of 1079 pregnant women of Chinese, Malay and
Indian descent. Through this database, we also provide a
novel metrics to quantify the biomedical traits for Asian
pregnant women.

Fixation index (FST) analysis of the genetics data in
our study identified genomic regions with low to high
frequency of genetic drift among the three Asian ethnic
groups. There were 32 708 (54%) SNPs with FSTvalues in
low differentiation category (0.05, 0.15), 18 529 (31%) with
FST in moderately differentiated (0.15, 0.25) and 9396
(15%) with FSTin high differentiation (≥0.25) category.
Most of these ethnicity specific genetic regions were
driven by allele frequency differences between Indians
and non-Indians. The ethnicity-specific SNPs identified
in our study also replicated all the 520 ethnicity specific
regions identified in the Singapore multi-omics study in
adults (21) and 25/50 (50%) SNPs (FST > 0.05) included
in the ancestry-informative marker panel from 1000
Genome on African, East Asian, European and South
Asian populations (Supplementary Material, Table S5)
(22). The lower number of ethnicity specific regions
identified in the previous Singapore study could be
due to the use of a relatively smaller number of

subjects (n = 364) and SNPs (∼2.5 million) used in their
study.

In DNA methylation analysis, 15.9% (67049) of the
CpGs showed inter-ethnic variation in the levels of
methylation. This differential methylation among the
three Asian sub-groups could potentially arise because
of genetic ancestry or shared environmental exposures.
Recent studies have shown that almost 20% of the
reliably assayed variation in blood DNA methylation is
heritable and that 50% of CpG sites show evidence of
a significant genetic component (23). Our own previous
work on variably methylated regions between neonates
of Asian ancestry found 25% of these variable regions
to be best explained by genotype alone and 75% by a
combination of genotype and environment (24). Popu-
lation comparison studies, such as those done between
African and European populations, have identified 77 857
CpGs (23) that are more genetically distinct (FST > 0.1).
Likewise, a similar study done on 573 Latino children
of diverse Latino sub-ethnicities enrolled in the Genes-
Environment and Admixture in Latino Americans (GALA
II) study also identified methylation differences at
916 CpGs to be associated with self-reported ethnicity
and 194 CpGs by genetically determined ancestry (25).
Hence, such methylation differences postulated to have
originated from genetic or environmental influences
unique to populations or geographical regions, also
bear the potential of ethnicity prediction from DNA
methylation data (26).

In addition to methylation, there is growing body of
evidence indicating that ethnicity can also impact gene
expression. For example, in a study on 270 individuals
derived lymphoblastoma cell lines from the HapMap
consortium, Stranger et al. (27) showed that gene expres-
sion levels are hereditable and indicated an abundance
of cis-regulatory variation in the human genome. In
an independent study of individuals of European and
African ancestry, Storey et al.(28) estimated that ∼17% of
genes are differentially expressed among populations.
Our own findings from this study show expression
profiles of 27.8% transcripts to vary by ethnicity among
Asian women; 47 of these ethnic variants were also
observed to vary in the whole blood transcriptome profile
of African, American and European populations (29)
(Supplementary Material, Table S6).

In the QTL analysis, meQTLs identified in GUSTO preg-
nant women showed moderate to high replication in
independent studies. For example, there was 66% concor-
dance with the Framingham Heart Study (30), 72% with
the study from Sweden people (31) and 87.5% with the
Brisbane Systems Genetics Study and the Lothian Birth
Cohorts (combined n = 1366) (32). For eQTLs, reproducibil-
ity among different ethnic groups and tissues is known
to vary (5) with tissue-specificity exerting a stronger
influence compared with genetic ancestry. For example,
in our study consisting of relatively healthy pregnant
women, we identified 3703 eGenes, of which 82.7% (3603)
overlapped with GTEx whole blood data (5) derived from
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a predominately male, relatively older, Caucasians and
African Americans cohort (irrespective of the direction
of effect size). For the remaining 640 eGenes that did not
overlap, 290 genes were not available in the GTEx data,
and 350 were studied but did not pass significance in
GTEx whole blood analysis. A comparative summary of
the outcomes of this study with existing publications is
provided in Supplementary Material, Table S7.

Our study has a few limitations. We had a dis-
proportionate number of subjects in the three ethnic
groups, with Chinese being overrepresented. However,
the sample size of Indian and Malay were comparable
to most multi-omics studies reporting inter-ethnic
variation. Also, we reported only the findings that passed
a stringent statistical cut-off recommended under each
omics field. Likewise, for individual omics profiles, we
had a relatively smaller sample size for RNA expression
analysis (N = 238), but this sample size was on the higher
side of what is typically used in such an analysis. For
example, GTEx recommends a sample size of at least 70
samples per tissue to provide sufficient statistical power
for eQTL discovery (5).

The major strength of this study is the establishment
of iMOMdb, an open access multi-omics resource that
provides useful insights into the biological information
at multiple levels that can help unravel the mechanisms
underlying biological condition of interest. Here, we used
ethnicity as an example of a phenotype that distin-
guishes molecular phenotypes and complex interactions
between them, but this data can be further explored to
address clinical needs, such as the roles these molecu-
lar phenotypes play in chronic disease, pregnancy out-
comes and aging. Our own observations from the PCA
analysis of the methylation and expression data showed
age and BMI to be significantly linked with molecu-
lar variation, thereby highlighting the potential of the
iMOMdb in facilitating future clinical research in multi-
ple avenues. iMOMdb also has additional features that
enables researchers to extend their candidate molecular
variant analysis to other well-known data resources in
the omics field, such as SNPedia, Ensemble, Geography
of Genome Variant (GGV) Browser, gnomAD, UCSC and
NCBI. iMOMdb can also be accessed on mobile devices
by use of a QR code (Fig. 1A).

In summary, multi-omics data structures are growing
quickly and are being deployed for genomics medicine.
The unique compendium of datasets generated in this
study and its open access provides multiple opportuni-
ties for future research in precision medicine field.

Material and Methods
Growing Up in Singapore Towards Healthy
Outcomes cohort
This study is part of the Growing Up in Singapore Towards
Healthy Outcomes (GUSTO) study, a population-based
prospective cohort study (33); 1247 pregnant women
between 18 and 50 years of age were recruited from

the two major public hospitals in Singapore, including
National University Hospital (NUH) and KK Women’s
and Children’s Hospital (KKH), between June 2009 and
September 2010. Participants had to be Singaporean
citizens or permanent residents, of Chinese, Malay or
Indian ethnicity, with parents of homogenous ethnic
background, had intention to deliver in NUH or KKH, had
planned to reside in Singapore 5 years post-recruitment
and were willing to provide biosamples (e.g. blood and
placenta) during the course of the study. Here, we define
‘ethnicity’ as the classification of these distinct genetic
subgroups of Asian descent. Furthermore, in our QC
checks, we confirmed the segregation of differing ethnic
groups with genotype and principal component analyses.
Mothers receiving chemotherapy, psychotropic drugs
or who had type I diabetes mellitus were excluded
(33). Interviewer administered questionnaires were
used to assess maternal self-reported pre-pregnancy
weight, maternal age, obstetric and medical history
during enrolment. Gestational weight gains (GWG) up
to 26th–28th weeks of pregnancy were calculated by
subtracting self-reported pre-pregnancy weights from
weights measured at 26th–28th weeks of gestation.
BMI was calculated from weights divided by height
squared (kg/m2). The participants also underwent a 2-
h 75 oral glucose tolerance testing (OGTT), including
fasting blood samples collected at 26th–28th weeks
of gestation. Sample and subject characteristics are
summarized in Table 1 and Supplementary Material,
Table S8, respectively.

Genotyping and QC
Illumina human OmniExpress + exome genotyping array

Genomic DNA was extracted from the buffy coat
available at 26th–28th weeks of gestation from 1079
participants in the study. Ethnic distribution of the
participants was 615 Chinese, 268 Indian and 196
Malay. A genome-wide scan of 933 866 tagging SNPs was
conducted using Illumina Omniexpress + exome arrays
(Illumina, San Diego) which was performed by the service
provider, Expression Analysis Inc. Data were processed in
GenomeStudio Genotyping Module™. Genotype calling
was done using GenCall software (Illumina, San Diego,
CA), which uses GenTrain clustering algorithm and
Bayesian model calling algorithm. Genotypes with a Gen
Call score less than 0.15 were not considered. Principal
components analysis was used to confirm self-reported
ethnicity/ancestry. Samples with call rate <95%, cryptic
relatedness and sex/ethnic discrepancies were excluded.
QC was performed separately for each ethnicity group
using PLINK v1.9 (34). SNPs with call rates <95%,
minor allele frequency (MAF) < 5% or those that failed
Hardy–Weinberg Equilibrium P-value (PHWE) < 1.0 × 10−6

were excluded from the analysis (35,36), and 629 493
autosomal SNPs were available for imputation. Alleles
on the positive strand were reported based on the hg19
human genome assembly.
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SNP imputation

SNP imputation was conducted using the Phase 3 Asian
panel from 1000 Genomes Project (37), for Malay we used
the EAS (i.e. Chinese, Japanese, Vietnamese) with a more
lenient tolerance level. Software package shapeit (38)
and Impute2 software packages (38,39) and SNPs were
performed under the hg19 assembly. A total of 29 million
SNPs were imputed after removing SNPs with imputation
quality R2 < 0.5, MAF < 0.05, genotype call rate < 95% and
PHWE < 1.0 × 10−6. Overall, 6 978 879 imputed bi-allelic
variants passed the QC in at least one ethnicity (Chinese,
Malay, Indian) (40) and were used in this study.

DNA methylation and QC
DNA methylation profiling on 915 maternal buffy coat
samples was performed using Infinium MethylationEPIC
BeadChip. DNA methylation IDAT files were processed in
R using the minfi package (41). Probes with fewer than
three beads for either the methylated or unmethylated
channel, or with detection P-value ≥0.01, were removed.
Probes on Y chromosomes, cross-hybridizing probes (42)
and probes with SNPs at the CpG site or its single-base
extension were excluded. Within-sample normalization
was performed using Noob pre-processing (43). The beta
values were first converted to M-value to perform Com-
Bat (44) for removing chip effects. The adjusted M-values
were then converted back to beta values for analysis.
Finally, we removed probes where the DNA methylation
range (maximum-minimum, excluding outliers) was less
than 5%. In total, 422 788 CpGs passed the QC criteria.
Genome coordinates (hg19 build) and gene annotations
of these CpGs were extracted from the Infinium Methy-
lationEPIC BeadChip manifest file. Cellular proportions
were estimated using a cell-type specific panel (45) and
included as technical covariates in subsequent models.

Benchmarking GUSTO cohort DNA methylation
data against Epigenome Roadmap
Thirty-eight primary tissues/cells profiled using RRBS
from the Epigenome Roadmap project (4) were down-
loaded and processed for benchmarking analysis. Briefly,
reads from both strands of the Epigenome Roadmap were
combined, and only those CpGs were retained that had
a minimum reads coverage of 30X, were not missing
more than 10/38 Epigenome Roadmap samples and had
interquartile range greater than 15% across different
Epigenome Roadmap tissues/cells. For GUSTO samples,
the median DNA methylation value across all 915 sam-
ples was used to represent each CpG. Finally, hierarchical
clustering was performed on the combined GUSTO and
Epigenome Roadmap CpG dataset.

RNA-seq transcriptomics and QC
Total RNA was extracted from the whole blood samples
available at 26th–28th weeks of gestation from 238
participants in the study. Whole transcriptome libraries
were constructed according to Illumina’s protocol and
quantified by real-time polymerase chain reaction

(real-time PCR). Sequencing was performed using the
Illumina HiSeq 4000 system. Raw sequencing reads
were first assessed using FastQC v0.10.1 (http://www.
bioinformatics.babraham.ac.uk/projects/fastqc) and
reads with low-quality scores and short sequences of
less than 50 bases were removed using Trimmomatic
v0.36 (46). Surviving reads were aligned against GRCh37
human genome assembly (Ensembl) using STAR (version
2.7.2c) (47) and unique reads were quantified using –
quantmode function embedded within STAR. Sample nor-
malization was performed using Bioconductor packages
in edgeR (48) and limma (49). Briefly, read counts from 238
subjects were read into R and transcripts with an average
read count of less than 5 and counts per million (CPM)
of less than 1 in at least 50 samples were removed, and
15 937 transcripts remained after QC. Next, to account
for library size differences, a Trimmed-Mean of M values
(TMM) normalization, implemented in the calNormFactors
function within the edgeR package, was performed. One
sample was removed due to the missing ppBMI value.
Normalized log CPM values were then extracted and used
for further QTL analysis.

To account for possible technical covariates such as
sample batch and cell-type heterogeneity, surrogate vari-
ables were identified and estimated using unsupervised
SVA via SVAseq package (50) (version 3.34.0) from R
adjusting for pre-pregnancy BMI, fasting and 2-h post-
load glucose levels and gestational age.

Since SVA does not allow for missing data, missing pre-
pregnancy BMI values were replaced with booking BMI
values due to their high correlation value (Pearson cor-
relation = 0.962). Using the num.sv function with default
setting (method = ‘be’), surrogate variable was estimated
and used as covariate for all subsequent analysis.

Benchmarking GUSTO cohort transcriptomics
data against GTEx
GUSTO maternal whole blood RNA expression data were
compared against the whole blood data from GTEx portal
(15). Gene read count data (v8) as well as data dictionary
containing information about sample attribute on the
GTEx website, https://gtexportal.org/, for 7567 samples
consisting of 8 distinct tissue types including liver, heart,
adipose tissue, nerve, brain, pituitary, muscle and blood
were sub-selected to be included for further analysis.
Using the limma and edgeR package in R, read counts
from 238 GUSTO and 7567 GTEx samples were read and
merged. Any transcripts with an average read count >5
and CPM >5 in at least 5000 samples were retained. Next,
TMM normalization was performed using the calcNorm-
Factor function to account for library sizes differences.
Normalized log CPM values were then extracted and
subjected to PCA analysis. Using similar approach as the
genomics platform, the 1st, 2nd and 3rd principal com-
ponents were used to investigate the closeness between
GUSTO maternal whole blood data against GTEx whole
blood data as well as other tissue types.
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Lipidomics
Antenatal maternal plasma

Antenatal maternal plasma samples were collected
during 26th–28th weeks of gestation and prepared
for lipidomics analysis as described previously (51,52).
Briefly, lipid extraction was carried out from 10 μL
of plasma by adding 100 μL of butanol: methanol
(extraction solvent) in a ratio of 1:1 (v/v) containing
10 mM ammonium format and lipid class specific
internal standards. Next, the samples were vortexed for
10 s followed by sonication for 60 min with temperature
maintained at 18–22◦C. The samples were centrifuged at
13 000 g for 10 min. The supernatants were collected in
mass spectrometry compatible vials and stored at −80◦C
for LC–MS/MS. These lipid extracts were analyzed by
using Agilent 6490 QQQ mass spectrometer interfaced
with an Agilent 1290 series HPLC system. Lipid extracts
were separated on a ZORBAX RRHD UHPLC C18 column
(2.1 × 100mm 1.8 mm, Agilent Technologies, 5301 Stevens
Creek Blvd Santa Clara, CA 95051 United States) with the
thermostat set at 45◦C. Mass spectrometry analysis was
performed in ESI positive ion mode with dynamic mul-
tiple reaction monitoring (53,54). QC samples (prepared
by pooling study samples) and blanks were processed
and analyzed along with the study samples within each
batch. QCs were used to correct signal drift introduced
by sample preparation and experimental measurements
across batches. After removal of 11 outlier samples by
PCA, a total of 480 lipid species representing 25 lipid
classes (N = 752) were used in this study.

Lipidomics of maternal side facing placenta

Maternal-facing placenta samples were collected, stored
and homogenized using the previously reported lipid
extraction and analysis methods (51,52,54). Briefly, lipids
were extracted from 20 μL (∼100 μg of protein) of placen-
tal homogenate using chloroform/methanol (2:1 (v/v), 20
volumes). Lipid analysis was performed by liquid chro-
matography, electrospray ionization-tandem mass spec-
trometry using an Agilent 6490 triple quadrupole mass
spectrometer interfaced with Agilent 1290 liquid chro-
matography system and the lipid extracts were separated
on a 2.1 × 100 mm Zorbax Eclipse Plus 1.8 μm C18 col-
umn. The relative concentration of each lipid species was
calculated from the peak area of the lipid species normal-
ized to the corresponding internal standards. Placenta
QCs were used for batch correction. No extreme outliers
were detected by PCA; 1042 maternal-facing placenta
samples were analyzed.

Cis-Qualitative trait loci mapping
Cis-QTL mapping

Cis-QTL mapping was conducted using QTLtools (55)
(version 1.0) and the procedure is illustrated in Supple-
mentary Material, Figure S6, which is similar to that
performed in EyeGEx (56). In cis-eQTL, the mapping
window was defined as 1 Mb up- and down-stream of
the transcript start site and end site, and the analysis
was performed on 233 GUSTO subjects for 15 937

transcripts and 6 790 080 genotyped and imputed SNPs
were available post-QC. In cis-meQTL, the mapping
window spanned ±1 Mb region centered by the CpG
locus. The identification of cis-meQTLs was performed
on 915 GUSTO subjects for the post-QC 422788 CpGs and
6 891 829 genotyped and imputed SNPs. cis-QTL mapping
was conducted in two phases. First, the nominal P-value
of the association between SNP to the continuous traits
(gene expression and DNA methylation) was conducted
by the QTLtools cis function adjusted by ethnicity and a
surrogate variable described in the section above. Second,
to account for multiple tests, an adaptive permutation
mode was used with the setting—permute 1000 for each
cis-association. A FDR was estimated under the q-value
paradigm (28) by the hypothesis of beta distribution-
extrapolated empirical P-values. An adjusted P-value
<0.05 was applied to identify genes related to at least one
significant cis-eQTL (‘eGenes’) or cis-meQTL (‘meGenes’).
We note that although no database of meQTLs exists to
benchmark our findings, most of our maternal blood cis-
eQTLs (at about 71%) were present in GTEx whole blood
analysis. The summary for QTL analyses is provided
under Table 2.

Covariates for QTL analysis

To control for population effects on the discovery of
QTLs, ethnicity information was used as a covariate in
both meQTL and eQTL mapping. For eQTL mapping,
a surrogate vector for batch effect by SVA analysis
(described in above section) is also included. In order to
test the robustness of cis-eQTL discovery, pre-pregnancy
BMI, maternal age and 2-h post-load glucose level were
added to the main confounders in sensitivity analysis for
eQTL mapping; 96.0% eQTL replicated in the sensitivity
study, of which 95.7% of the related SNPs were replicated.
For meQTL mapping, covariates include maternal age,
chip position, DNA extraction method, hospital for
blood collection and cellular composition. In sensitivity
study, pre-pregnancy BMI and 2-h post-load glucose
levels were added to the main confounders and the
sample size reduced to 816 for the completeness of
the variates for meQTL mapping. Results showed that
the cis-meQTL mapping was robust after modifying
the covariates and sample size. Sensitivity analysis
replicated 96.4% meQTLs and 96.7% of the related CpGs
from the primary study (Supplementary Material, Fig. S7
and Supplementary Material, Table S9).

Maternal clinical phenotypes and inter-individual variation
in multi-omics data

PCAs was performed on genetics, DNA methylation
and transcription data independently. Using genomic
data, PCA was performed with PLINK1.9 using a subset
of 111 813 SNPs after linkage disequilibrium pruning
of 629 K genotyped SNPs from 1079 subjects. For
DNA methylation and transcriptomics data, PCs were
generated using 422 788 probes with >5% variation in
915 samples and 15 937 transcripts from 238 subjects,
respectively. The summation of adjusted R-square values
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obtained from univariate linear regression of clinical
phenotypes against all principal components of each
omics platform (genetics, DNA methylation and tran-
scriptomics) was performed to obtain the proportion of
variation explained per clinical phenotype. These clinical
phenotypes include ethnicity, pre-pregnancy weight,
height, pre-pregnancy BMI, fasting and 2-h post-load
glucose levels as well as GWG (Supplementary Material,
Fig. S4). Data showed that among the eight studied
variables, ethnicity contributed the greatest variability
among the eight covariates within the omics platforms
investigated. Similar PCA analysis was also conducted
on lipidomics data of antenatal plasma (N = 752) and
placenta (N = 1042) at delivery (Fig. 4B and C).

Ethnicity-based multi-omics association studies
Genome-wide association study with ethnicity

To investigate the inter-ethnic variation in genotypes,
Weir–Cockerham estimator (57) was used to calculate
the FST for Chinese, Malay and Indian subgroups. FST is
a widely used measure to quantify the extent to which
allele frequency is different between ethnicity/ethnic
groups at each genetic variant (21,58). This was mea-
sured by using the formula below. To investigate the
inter-ethnic variation in genotypes, Weir–Cockerham
estimator (57) was used to calculate FST for Chinese,
Malay and Indian subgroups. FST is a widely used
measure to quantify the extent to which allele frequency
is different between ethnicity groups at each genetic
variant (21,58). This was measured by using the following
formula:

FST =
(
k − 1

)
.σ 2

k.p.
(
1 − p

)

Here, σ 2 indicates the variance frequency of a partic-
ular SNP, p indicates the average frequency of the same
allele in the cohort and k indicates the total number of
sub-populations. In general, FSTvalues were calculated to
reflect on the joint effects of drift, migration, mutation
and selection based on the distribution of genetic vari-
ation among populations (58), where a bigger FSTvalue
indicates a greater difference in the allele frequencies
across population. The FST calculation was conducted
by vcftools (option –weir-fst-pop) (59). The FST values
between two populations were estimated by the average
value from single SNP, which was defined as the ‘average
of ratios’ in (60). An SNP was considered significant if FST

> 5% (21), there were 1.9 million ethnicity-related SNPs,
corresponding to 30 350 gene regions (Supplementary
Material, Fig. S5).

DNA methylation associations study with ethnicity

The relationship between DNA methylation and ethnic-
ity was analyzed via multivariate regression analysis
adjusted for maternal age, chip position, DNA extrac-
tion method, hospital for blood collection and cellular
composition. Pre-pregnancy BMI and 2-h post-load glu-
cose levels were added on top of the main covariates in

sensitivity analyses. A probe was considered significant if
the adjusted P-value was below the Bonferroni threshold
in both multivariate and univariate analyses (P-value
< 1.18 × 10−7) (Supplementary Material, Fig. S5).

TWAS with ethnicity

Differential analysis for ethnicity was performed using
an empirical Bayes linear fit model approach (after Voom
to account for mean–variance relationship) adjusting for
surrogate variables. For this analysis, contrast matrix
between each pair of ethnicity group was set. The overall
P-values and the resulting log fold-change values for
each ethnicity pairwise comparison were then obtained
by using the topTableF function embedded within the
Limma package. Similar to the EWAS study for ethnic-
ity, BMI, OGTT 2 h and maternal age were included in
addition to the main covariates for sensitivity analy-
sis. Finally, nominal P-values were adjusted for multi-
ple testing using Benjamini–Hochberg (BH) correction.
A linear mRNA transcript was considered significant if
the adjusted P-value was less than 0.05 (Supplementary
Material, Fig. S5).

Association of antenatal plasma and placental lipids with
ethnicity

We tested the association of antenatal plasma and pla-
cental lipids with ethnicity by performing a one-way
ANOVA analysis on the log10 transformed lipidomics
data. Altogether, 480 and 483 lipid species were tested
for antenatal plasma and placenta lipids, respectively.
We considered a lipid species to be significantly associ-
ated with ethnicity if the BH-corrected FDR adjusted P-
value <0.05 for both antenatal plasma and placenta lipid
species (Supplementary Material, Tables S3 and S4).

Gene annotation
Gene annotation is based on GRCh37 human genome
assembly Homo_sapiens.GRCh37.87.gtf build. The infor-
mation for gene identification, start site end site and
biotypes was used in eQTL mapping and related genomic
annotation. In order to merge ethnicity-related SNPs,
CpGs and transcripts, a gene region was defined as 5000
base pair up and downstream of the gene start and
end site, respectively. Using ‘bedtools intersect’, the gene
regions where the ethnicity-related SNPs, CpGs, tran-
scripts co-located were defined as ethnicity hotspots. If
an ethnicity hotspot overlapped with both eGenes and
meGenes, we defined the gene region as ethnicity QTL
hotspot gene (Supplementary Material, Fig. S6).

Gene set enrichment analysis
GSEA was performed using Molecular signatures
Database version 7.0 (MsigDB, CP:Reactome set) in GSEA
(61). The P-value is calculated using hypergeometric
distribution based on the number of overlapped genes
associated with the number of the genes in the gene
set, taking into consideration all observed genes. The
FDR adjusted P-value was applied to adjust for multiple
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testing. A pathway was considered significant if the total
gene counts within a gene set did not exceed 1000 and
passed an FDR adjusted P-value < 0.05 (Supplementary
Material, Fig. S8).

Supplementary Material
Supplementary Material is available at HMG online.
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