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A B S T R A C T   

Background: The heterogeneity of schizophrenia (SCZ) regarding psychopathology, illness trajectory and their 
inter-relationships with underlying neural substrates remain incompletely understood. In a bid to reduce illness 
heterogeneity using neural substrates, our study aimed to replicate the findings of an earlier study by Chand et al. 
(2020). We employed brain structural measures for subtyping SCZ patients, and evaluate each subtype’s rela-
tionship with clinical features such as illness duration, psychotic psychopathology, and additionally deficit 
status. 
Methods: Overall, 240 subjects (160 SCZ patients, 80 healthy controls) were recruited for this study. The par-
ticipants underwent brain structural magnetic resonance imaging scans and clinical rating using the Positive and 
Negative Syndrome Scale. Neuroanatomical subtypes of SCZ were identified using “Heterogeneity through 
discriminative analysis” (HYDRA), a clustering technique which accounted for relevant covariates and the inter- 
group normalized percentage changes in brain volume were also calculated. 
Results: As replicated, two neuroanatomical subtypes (SG-1 and SG-2) were found amongst our patients with SCZ. 
The subtype SG-1 was associated with enlargements in the third and lateral ventricles, volume increase in the 
basal ganglia (putamen, caudate, pallidum), longer illness duration, and deficit status. The subtype SG-2 was 
associated with reductions of cortical and subcortical structures (hippocampus, thalamus, basal ganglia). 
Conclusions: These replicated findings have clinical implications in the early intervention, response monitoring, 
and prognostication of SCZ. Future studies may adopt a multi-modal neuroimaging approach to enhance insights 
into the neurobiological composition of relevant subtypes.   

1. Introduction 

Schizophrenia (SCZ) is a chronic and serious mental illness affecting 
>27 million worldwide (GBD 2017 Disease and Injury Incidence and 
Prevalence Collaborators, 2018). Heterogeneity in neurobiology (Voi-
neskos et al., 2020), polygenic scores (Alnæs et al., 2019), symptom 
presentations (Van Rheenen et al., 2017), treatment responses (Malho-
tra, 2015), and outcomes (Huber, 1997) and their inter-relationships 
remain incompletely understood and can potentially confound 

evaluation and affect management of the condition (Lakhan and Vieira, 
2009). Grouping patients by clinical subtypes allows for a deeper ex-
amination of homogenous groups, and this is often done using measures 
which assess symptomatology (e.g positive/negative symptom do-
mains), cognitive status or illness course (e.g remission status) (Tan 
et al., 2020; Weinberg et al., 2016; Wong et al., 2020). Previous studies 
have attempted to link these clinical subtypes in SCZ based on deficit 
syndrome (Tan et al., 2020), cognitive functioning (Ho et al., 2020; 
Seaton et al., 2001; Weinberg et al., 2016) and remission status (Wong 
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et al., 2020) with underlying neural substrates. 
Recent advances in the field of machine learning have facilitated the 

application of neuroimaging-based measures for the classification of 
patients with SCZ and healthy controls (HCs) (Chand et al., 2020; Chin 
et al., 2018; Hu et al., 2021; Oh et al., 2019) and the evaluation of un-
derlying brain changes in SCZ (Ivleva et al., 2012; Killgore et al., 2009; 
Pina-Camacho et al., 2016; Womer et al., 2014). Using neuroanatomical 
substrates to group SCZ could potentially highlight biological subtypes 
which can be correlated with clinical features. Evaluation of these 
neural subtypes could allow for monitoring of biological changes and 
responses to treatment and can help in management and prognostication 
of patients (Dwyer et al., 2018; Voineskos et al., 2020). Thus far, 
compared with clinical subtyping, there are fewer studies which have 
explored neuroanatomical subtyping and its relationship with other 
relevant clinical features (Chand et al., 2020; Dwyer et al., 2018). 
Additionally, amongst these studies, the process of subtyping was car-
ried out only using neuroanatomical features within the patient group 
without the inclusion of other confounding variables such as age and 
gender which can influence subtyping results (Arnedo et al., 2015; 
Clementz et al., 2016; Du et al., 2015). In this regard, a novel method 
known as HYDRA (heterogeneity through discriminative analysis) 
(Varol et al., 2017) can be used as it models differences between patient 
subtypes as well as HCs based on neuroanatomical features and relevant 
covariates. 

In a bid to reduce illness heterogeneity using neural substrates, we 
aimed to replicate the earlier findings by Chand et al. (2020). We carried 
out clustering of HCs and SCZ subtypes simultaneously using HYDRA 
and evaluated the relationship between SCZ subtypes with clinical fea-
tures such as illness duration, psychotic psychopathology and addi-
tionally deficit status. 

2. Materials and methods 

2.1. Study sample 

We recruited patients with SCZ and HCs from the Institute of Mental 
Health, Singapore, and the community respectively. Patients with SCZ 
were diagnosed using structured clinical interviews of the Diagnostic 
and Statistical Manual of Mental Disorders, Fourth Edition diagnostic 
criteria (DSM-IV)-Patient Version (First et al., 1994a, 1994b), with in-
formation from the comprehensive clinical history, mental state exam-
ination, and existing medical records. All patients had no history of any 
significant neurological illness such as seizures, cerebrovascular acci-
dents, or head injury. The HCs had no history of psychiatric or neuro-
logical disorders (based on the Structured Clinical Interview for 
Diagnosis, nonpatient version) (First et al., 1994b) and were not 
receiving any psychotropic medications. Written, informed consent was 
obtained from all the participants after a detailed explanation of the 
study procedures. The study protocol was approved by the Institutional 
Review Boards of both the Institute of Mental Health and the National 
Healthcare Group, Singapore (NHG DSRB Ref: 05/00186, 07/00102). 

2.2. Clinical evaluations 

The Positive and Negative Syndrome Scale (PANSS) (Kay et al., 
1987) was administered to assess the severity of psychopathology and 
the Global Assessment of Functioning (GAF; APA, 1994) was used to 
measure the level of psychosocial functioning. For the deficit status, we 
used the Proxy for the Deficit Syndrome (PDS) criteria (Kirkpatrick 
et al., 1993) to identify patients with Deficit Syndrome (DS). The PDS is 
a valid tool for the categorization of deficit and non-deficit SCZ (Goetz 
et al., 2007). The PDS is defined as the sum of the PANSS items for 
anxiety, guilt, depressive mood, and hostility subtracted from the 
blunted affect item score i.e. PDS index score =

∑
Blunted affect(N1) – [ 

Anxiety(G2) + Guilt feelings(G3) + Depression(G6) + Hostility(P7)]. As 
with previous studies (Sum et al., 2018; Voineskos et al., 2013), an index 

cut-off point of − 2 was used to classify deficit versus non-deficit pa-
tients. To ensure the stability of the diagnosis, the negative symptoms 
had to be present for at least a year (Fenton and McGlashan, 1994) as 
determined by the clinician investigator when assessing the presence 
and severity of negative symptoms. 

2.3. Neuroimaging using MRI and image processing 

All images were acquired on a 3-Tesla MR system (Achieva 3 T, 
Philips Medical Systems, Eindhoven, Netherlands) with the whole brain, 
high resolution, 3D MP-RAGE (magnetization-prepared rapid acquisi-
tion with a gradient echo) volumetric scans (TR/TE/TI/flip angle 8.4/ 
3.8/3000/8; matrix 256 × 204; FOV 240 mm2) with axial orientation 
(reformatted to coronal), and covering the whole brain for structural- 
anatomic detail. 

FreeSurfer 6.0.0 was used for neuroimage processing and to extract 
cortical parcellation parameters from structural MRI data. This was 
performed by following a 5 step pre-processing protocol (fully described 
in (Fischl et al., 2004; Fischl et al., 1999)), which were (i) Affine 
registration with MNI305 space (ii) Volumetric labeling, (iii) B1 bias 
field correction, and (iv) High dimensional nonlinear volumetric align-
ment to the MNI305 atlas and (v) Subcortical segmentation/cortical 
parcellation. After the pre-processing steps, the data are labeled via a 
final segmentation step that is based on both subject-independent 
probabilistic atlas and subject-specific measured values. The process-
ing pipeline was conducted via a docker and singularity-based frame-
work of the parallel multi-GPU-based computing environment at the 
National Supercomputing Center, Singapore. 

2.4. Identifying neuroanatomical subtypes using HYDRA 

Neuroanatomical subtypes in SCZ were identified using “Heteroge-
neity through discriminative analysis” (HYDRA) (Varol et al., 2017), a 
clustering technique with neuroimaging features as input factors and 
which takes into account relevant covariates such as age, gender, anti-
psychotic dose. HYDRA is a multivariate simultaneous classification and 
clustering technique (Varol et al., 2017) which separates HC and SCZ 
patients by building a convex polytope with maximum margins around 
the control group samples. Each face of the polytope identifies the 
subtypes in the patient group. HYDRA is different from other clustering 
techniques (e.g. k-means, fuzzy c-means, nearest neighbors) as it uses 
imaging feature differences for subtyping. The associations of SCZ sub-
jects to the facets of the polytope determine their membership to 
different illness subtypes. The optimal number of subtypes is identified 
by calculating either the “Rand Index”, a measure of similarity between 
clusters, or by using “Adjusted Rand Index (ARI)”, which takes into 
account the chance of grouping the elements into clusters, correlations 
between regions and indicates the accuracy of groupings. The subtyping 
index (k) varied from 2 to 10 and adjusted rand index (ARI) (Varol et al., 
2017) was calculated to identify the optimal number of subtypes in our 
study sample. 

2.5. Statistical analysis 

R studio version R-4.0.3 (R Core Team, 2020; R Studio Team, 2020) 
was used to perform comparisons of structural volumes between SCZ, 
HC and SCZ subtypes. The statistical package JMP12®, a statistical di-
vision of SAS (JMP, 1989-2021), was used for all the Generalized Linear 
Model (GLM) based model analyses in the study. The “Fit model” 
function, was used to calculate the various GLM fits to specify the dis-
tributions and their respective link functions. The inter-group normal-
ized percentage changes in brain volume (SCZ, SCZ subtypes and HC) 
were calculated using the formula %Volume change =
(VolumeHC − VolumeSG)

(VolumeHC+VolumeSG)
2

*100. 
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3. Results 

3.1. Overall sample 

Overall, 240 subjects (SCZ = 160, HC = 80) participated in this 
study. Quality check of the subject MRI data revealed imaging artifacts 
in 2 SCZ and 4 HC subjects which were subsequently excluded from the 
analysis, thus leaving a final data set of 234 subjects (SCZ = 158, HC =
76). In terms of demographic characteristics of the study cohort, SCZ 
and HC were comparable in age and gender (Table 1). 

3.2. Neuroanatomical subtypes identified using HYDRA 

The number of neuroanatomical subtypes (k) in HYDRA (Varol et al., 
2017), yielded the highest adjusted rand index (ARI) for k = 2, indi-
cating the optimal number of subtypes which were labeled as subtypes 
SG-1 and SG-2. Furthermore, the efficacy of HYDRA’s clustering was 
evaluated by changing the order of the variables, and by using a subset 
of the variables. <1 % of interchange was observed between subtypes 
implying the robustness of HYDRA-based clustering and classification. 

The clinical and demographic characteristics of the subtypes (SG-1 & 
SG-2) are summarised in Table 2. The 2 subtypes differed in terms of 
illness duration (SG-1 > SG-2, p < 0.001) but were comparable in terms 
of age, gender, PANSS total, and GAF scores. The distribution of deficit/ 
non deficit status amongst the 2 subtypes was 33.3 %/66.7 % for SG-1, 
and 16.9 %/83.1 % for SG-2 respectively, and SG-1 was associated with 
a greater proportion of subjects with deficit status (χ2 (1158) = 5.49, p 
= 0.019). 

In terms of normalized percentage brain volume differences, 
compared with HC, subtype SG-1 showed an increase in brain volumes 
involving lateral ventricles and basal ganglia whilst subtype SG-2 
showed a decrease in brain volumes involving cortical and subcortical 
structures (hippocampus, thalamus, basal ganglia) (Fig. 1). Of note, 
reduced volumes of corpus callosum (central, mid-anterior and mid- 
posterior portions) are found in both neuroanatomical subtypes SG-1 
and SG-2. 

4. Discussion 

There were several main findings from our study. First, we replicated 
the two main neuroanatomical subtypes described in Chand et al. (2020) 
within our population of patients with SCZ. Second, in this study, the 
subtype SG-1 was associated with brain volume enlargements in the 
third and lateral ventricles, basal ganglia (putamen, caudate, pallidum), 
longer illness duration, and deficit status. The subtype SG-2 was asso-
ciated with brain volume reductions of cortical and subcortical struc-
tures (hippocampus, thalamus, basal ganglia). In addition, volume 
reductions of corpus callosum were seen in both neuroanatomical 

subtypes. 
SCZ subtype SG-1 was associated with illness chronicity, and deficit 

status but not SG-2. The biological findings related to the two subtypes 
extended the clinical two-syndrome concept postulated by Crow (1985) 
whereby Type II SCZ was characterized by deficit symptoms, poorer 
response to neuroleptics, and potentially irreversible psychosis and 
symptoms. Type I SCZ, on the other hand, was characterized by absence 
of deficit status, better response to neuroleptics, and potentially 
reversible psychosis and symptoms. Thus, SG-1 subtype in our study 
corresponded to Crow’s Type II SCZ (longer duration of illness, deficit 
status) and was associated with enlargements of the third and lateral 
ventricles, as well as the basal ganglia. Ventricular enlargement has 
been previously suggested to indirectly reflect changes in the temporal 
lobe over time (Brown et al., 1986) and basal ganglia enlargement is 
thought to be a response to antipsychotic treatment longitudinally 
(Borgwardt et al., 2009). Subtype SG-2 in this study corresponded with 
Crow’s Type I SCZ (absence of deficit status), and was associated with 
specific brain changes, namely, volume reductions of cortical and 
subcortical structures (hippocampus, thalamus, basal ganglia). 

We found that subtype SG-1 was associated with deficit status. This is 
consistent with earlier literature which found an association between 
deficit symptoms and enlargements of the third and lateral ventricles as 
seen in subtype SG-1 (Andreasen et al., 1982; Weinberger et al., 1979). 
Third ventricular width has been postulated to be related to the mode of 
onset of SCZ in one study (Sandyk, 1993), as a greater width was asso-
ciated with an insidious onset and less favourable outcome. Deficit 
status can be debilitating and are associated with motivational deficits 
which are related to underlying basal ganglia changes (Goldsmith and 
Rapaport, 2020). Apart from motor functioning, the basal ganglia is 
thought to play a role in emotional processing, and has been implicated 
in affective flattening (Bragulat et al., 2007) and anhedonia (Dunn et al., 
2002; Plailly et al., 2006) in clinical populations. Ballmaier and col-
leagues (2008) found an inverse relationship between volume changes 
in the anterior pole of the putamen and severity of blunted affect in 
unmedicated patients with SCZ. Whilst previous studies had reported 
basal ganglia enlargements with chronicity of illness and treatment 
(Okada et al., 2016; van Erp et al., 2016), a recent meta-analysis 

Table 1 
Demographic and clinical characteristics of study cohort.  

Features HC (N =
76) 

SCZ (N =
158) 

Statistical test 

Age, years, mean ± SD 32.82 ±
9.11 

33.3 ± 9.0 t-stat = − 0.39, df =
344.88, p = 0.70 

Gender, Males, n (%) 47 (61.8 
%) 

107 (67.7 
%) 

χ2 (1, 234) = 0.79, p =
0.37 

Age at illness onset, years – 26.16 ±
7.57 

– 

Illness duration, years – 6.49 ± 7.36 – 
Antipsychotic dose, CPZ 

eq mg/day 
– 206.47 ±

185.26 
– 

PANSS total score – 40.4 ± 8.9 – 
GAF total score – 50.9 ± 18.2 – 

Abbreviations: CPZ eq = Chlorpromazine equivalents; GAF = Global Assessment 
of Functioning; HC = Healthy controls; 
PANSS = Positive and Negative Syndrome Scale; SCZ = Schizophrenia. 

Table 2 
Demographic and clinical characteristics of neuroanatomical subtypes SG-1 and 
SG-2.   

SCZ (N =
158) 

SG-1 (N =
87) 

SG-2 (N =
71) 

SG-1 vs SG-2 

Feature     

Age, years, mean ±
SD 

33.3 ± 9.0 34.80 ±
8.74 

31.38 ±
8.97 

n.s. 

Gender, Males, n (%) 107 (67.7 
%) 

61 (70.1 
%) 

46 (64.8 
%) 

n.s. 

Deficit Syndrome, n 
(%) 

41 (25.9) 29 (33.3) 12 (16.9) χ2 (1158) =
5.49, p = 0.019 

Illness duration, 
years 

6.49 ±
7.36 

8.36 ±
8.10 

4.21 ±
5.61 

t(152.28) =
3.79, p < 0.001 

Antipsychotic dose, 
CPZ eq mg/day 

206.47 ±
185.26 

227.41 ±
215.34 

178.52 ±
134.32 

n.s. 

PANSS total score 40.4 ± 8.9 39.76 ±
8.86 

41.18 ±
8.93 

n.s. 

PANSS positive 
subscale score 

10.8 ± 3.9 10.43 ±
3.95 

11.15 ±
3.91 

n.s. 

PANSS negative 
subscale score 

9.1 ± 3.0 9.34 ±
3.38 

8.76 ±
2.57 

n.s. 

PANSS GPS subscale 
score 

20.6 ± 4.1 19.99 ±
3.74 

21.27 ±
4.52 

n.s. 

GAF total score 50.9 ±
18.2 

52.60 ±
17.59 

48.84 ±
18.74 

n.s. 

Abbreviations: CPZ eq = Chlorpromazine equivalents; GAF = Global Assessment 
of Functioning; GPS = General Psychopathology; PANSS = Positive and Nega-
tive Syndrome Scale; SCZ = Schizophrenia; SG-1 = Schizophrenia subtype 1; SG- 
2 = Schizophrenia subtype 2. 
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Fig. 1. Normalized percentage brain volume differences between Healthy Controls (HC) and neuroanatomical subtype SG-1, and HC and Subtype SG-2. Blue bars 
indicate subtype SG-1 structural volume changes whilst orange bars indicate SG-2 subtype volume changes. The negative x-axis represents volume increase (HC <
SCZ) and positive x-axis indicate volume decrease (HC > SCZ). (For interpretation of the references to colour in this figure legend, the reader is referred to the web 
version of this article.) 
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observed reduced caudate volume in SCZ patients with deficit symptoms 
compared with HCs (Li et al., 2018). Smaller right putamen volume 
(Cascella et al., 2010) has been found in patients with deficit syndrome. 
However, earlier studies had also reported no significant changes of 
these structures (e.g Galderisi et al., 2008; Voineskos et al., 2013). Dif-
ferences in medication status in initiation and use over time (Kirschner 
et al., 2021; van erp et al., 2016) could possibly serve to explain the 
contrasting findings involving the basal ganglia when compared to our 
study. Of note, medication-naïve SCZ patients have been found to have 
normal (Gur et al., 1998) or even decreased basal ganglia volumes 
(Keshavan et al., 1998; Corson et al., 1999). Regarding medications, 
typical antipsychotic drugs have been most often associated with vol-
ume increases compared with atypical antipsychotic drugs (Andersson 
et al., 2002; Lang et al., 2004). 

The widespread reduction of cortical and subcortical brain volumes 
associated with SG-2 are consistent with earlier biological findings un-
derlying SCZ. The nucleus accumbens (Fan et al., 2019; Mamah et al., 
2007), amygdala, (Fan et al., 2019), thalamus (Yue et al., 2016), and 
hippocampal subfield volumes (Kühn et al., 2012) have been inversely 
associated with psychotic symptoms. In particular, specific hippocampal 
subfields are proposed to act as a binding module for cortical circuits 
containing weakly related sensory representations, such as the creation 
of representations of space and time which act as a basis of conscious 
awareness (Behrendt, 2010). Dysfunctions in these hippocampal sub-
fields could result in abnormal integration of sensory representations 
which potentially manifests as psychotic symptoms (Tamminga et al., 
2010). It has also been suggested that the disinhibition of subfields can 
cause hyperdopaminergic states which in turn produce psychosis (Lis-
man et al., 2008). Of note, volume reductions of corpus callosum were 
found in both neuroanatomical subtypes which are consistent with the 
findings of earlier reports (Collinson et al., 2014; Mitelman et al., 2009). 
Collinson et al. (2014) reported volume reductions of corpus callosum 
which were greatest in patients whose condition was chronic relative to 
patients with a first episode whilst Mitelman et al. (2009) reported 
similar reductions of absolute size of corpus callosum in SCZ compared 
with healthy controls over illness course longitudinally. In addition, 
deficit status in SCZ is linked with poor functional outcome (Galderisi 
et al., 2018), and poor outcome in SCZ has been associated with smaller 
callosal size compared with patients with better outcome (Mitelman 
et al., 2009). 

In the present study, neural substrates have guided our classification 
of SCZ, offering clues to the neurobiology of the clinical features asso-
ciated with SCZ such as illness duration, and deficit status. These find-
ings have clinical implications in at least three main areas, namely early 
intervention, response monitoring, and prognosis. First, for earlier 
intervention, neurobiological features associated with SCZ can be used 
to assist in identification of subtypes of patients at variable duration of 
illness and clinical presentation even if history is unreliable or unavai-
lable. For example, the presence of ventricular enlargement in a hitherto 
untreated patient may indicate long duration of illness including dura-
tion of untreated psychosis. Earlier treatment and improvement of 
illness psychopathology potentially can facilitate better illness remission 
(Correll et al., 2018), mitigate against longer term impact with illness 
chronicity especially if the condition is left untreated (Penttilä et al., 
2014), improve functioning which can in turn reduce the burden of 
illness (Ruggeri et al., 2015). Second, for response monitoring, neuro-
biological features within subtypes can be monitored over time to 
evaluate the response of these structures to treatment. For example, 
within subtype SG-2, patients who are found with reductions of germane 
cortical (eg cortical white matter) or subcortical regions (eg hippo-
campus, thalamus), and absence of deficit status may indicate respon-
siveness to antipsychotic treatment which should be initiated 
appropriately. Third, for prognosis, observable neural markers or lack 
thereof can guide prognostication for our patients seen clinically (Daz-
zan, 2014; Keshavan et al., 2020; McGuire and Dazzan, 2017). For 
example, the absence of third and lateral ventricular enlargement in an 

older patient may portend a better prognosis compared with a younger 
patient with corresponding ventricular enlargement and who also has 
deficit presentation of avolition and social withdrawal. 

There were several limitations to our study. First, our study had a 
modest sample size and it was cross-sectional in nature. Thus we were 
unable to report changes of neuroanatomical membership that may be 
observed over time in terms of subtypes. Second, subtyping was based 
on brain volume without the inclusion of other parameters such as 
cortical thickness, shape changes which could potentially have further 
enriched our understanding of the relationship between the neuroana-
tomical subtypes and clinical phenotypes. Third, we relied on a single 
imaging modality to identify neurobiological parameters for analysis. 
Future studies may look into the optimal number of subtypes in a larger 
cohort of SCZ and HC participants, examine the relationship of further 
subtypes with other clinical features such as cognition, functioning, as 
well as adopting a multi-modal neuroimaging approach to enhance in-
sights into the neurobiological composition of the subtypes. 

5. Conclusion 

In summary, using a robust clustering classification framework, we 
replicated two neuroanatomical subtypes which were associated with 
specific clinical phenotypes. Further larger studies adopting a multi-
modality imaging approach may look into how different neural sub-
strates are associated with other clinical features such as cognitive and 
psychosocial functioning, with potential implications for illness man-
agement and prognostication. 
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