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Abstract 

Chronic metabolic diseases arise from changes in metabolic fluxes through biomolecular pathways and gene net-
works accumulated over the lifetime of an individual. While clinical and biochemical profiles present just real-time 
snapshots of the patients’ health, efficient computation models of the pathological disturbance of biomolecular 
processes are required to achieve individualized mechanistic insights into disease progression. Here, we describe 
the Generalized metabolic flux analysis (GMFA) for addressing this gap. Suitably grouping individual metabolites/
fluxes into pools simplifies the analysis of the resulting more coarse-grain network. We also map non-metabolic 
clinical modalities onto the network with additional edges. Instead of using the time coordinate, the system status 
(metabolite concentrations and fluxes) is quantified as function of a generalized extent variable (a coordinate in the 
space of generalized metabolites) that represents the system’s coordinate along its evolution path and evaluates the 
degree of change between any two states on that path. We applied GMFA to analyze Type 2 Diabetes Mellitus (T2DM) 
patients from two cohorts: EVAS (289 patients from Singapore) and NHANES (517) from the USA. Personalized systems 
biology models (digital twins) were constructed. We deduced disease dynamics from the individually parameterized 
metabolic network and predicted the evolution path of the metabolic health state. For each patient, we obtained an 
individual description of disease dynamics and predict an evolution path of the metabolic health state. Our predictive 
models achieve an ROC-AUC in the range 0.79–0.95 (sensitivity 80–92%, specificity 62–94%) in identifying phenotypes 
at the baseline and predicting future development of diabetic retinopathy and cataract progression among T2DM 
patients within 3 years from the baseline. The GMFA method is a step towards realizing the ultimate goal to develop 
practical predictive computational models for diagnostics based on systems biology. This tool has potential use in 
chronic disease management in medical practice.
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Introduction
In the current understanding, a metabolic disorder can 
be traced to a particular set of biochemical reactions and 
metabolites, whose abnormal changes lead to syndrome 
manifestation and progression. These altered metabolic 
states typically have complex causes and develop due to 

individual genetic variations, changes in the environ-
ment, behavioral factors, lifestyle, or as a side effect of 
disease treatment [1, 2]. As these alterations are associ-
ated with chronic disease and aging, understanding the 
trend of their long-term development is vital.

Despite advances in large-scale and high-precision 
techniques for metabolite measurements and their suc-
cessful applications in identification of certain inborn 
metabolic disorders, quantifying the progress of chronic 
diseases remains challenging [3–5]. To enable broad 
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adoption of large-scale metabolic analysis in the clinical 
setting, we need to bridge several major gaps. First, the 
high-throughput analytical techniques are frequently not 
as robustly established as clinical assays, which include 
reference ranges, standards of reproducibility, and vali-
dated metrics of sensitivity and specificity [4, 6–8]. 
Second, the lack of robust and flexible bioinformatics 
frameworks and computational approaches hinders con-
textualizing metabolic models with rich clinical meta-
data and physiological readings [7, 9–11]. Third, the issue 
of time scale is pertinent in a clinical application with 
processes equilibrating within hours and days, whilst 
subtle drifts along health state trajectories could occur in 
the time frame of years and decades.

Mathematical methods developed within the metabolic 
modeling research area, such as enzymatic kinetic mod-
els, metabolic flux analysis, or stochastic models, were 
proposed to analyze metabolic systems. Traditional enzy-
matic kinetics models using the Michaelis–Menten and 
the Briggs–Haldane equations [12], have met a great suc-
cess in describing the dynamics of isolated biochemical 
reactions in vitro. Since these models essentially describe 
dynamics of intermediate states of any bound substrate, 
they are general enough to also describe elementary 
behavior of more complex systems, ranging from bacte-
rial growth [13] to physiological processes [14–16] and 
epidemiology [17, 18]. The following three examples of 
kinetic models application with increasing complexity 
(an enzyme study, an in vivo metabolite dynamics, a par-
ticle absorption study) illustrate opportunities and limi-
tations of such an approach.

–	 Standard enzymatic kinetics analysis is applied to 
quantify the effects of several genetic variants of the 
arachidonate 15-lipoxygenase type II, an enzyme with 
a potential role in the development of coronary artery 
disease [16]. The authors determined mutation-spe-
cific kinetic parameters. However, the link between the 
kinetic model and the process of atherosclerotic plaque 
formation remains opaque.

–	 In a clinical study of glucose disposal with 88 healthy 
volunteers receiving four types of insulin infusions, 
kinetic parameters of glucose concentration for an 
M–M model of glucose metabolism were determined 
[14]. The authors found the kinetic constants insulin 
concentration-dependent, probably as a result of their 
model representing the entire metabolic mechanism 
only in parts.

–	 Study [15] applied the M–M-like model to describe 
pulmonary absorption kinetics of particles in the 
lungs of rats. The authors found their generalized 
kinetic model correctly reproducing the clearance  
rate of all four studied dust types at the phenomeno-

logical level but without a biomolecular mechanistic 
explanation.

At the same time, kinetic models have been proven of 
limited value for clinical relevant applications, because 
the models require a large number of biochemical reac-
tion parameters, the physiological values of which are 
difficult to determine in a clinical setting.

In contrast, MFA allows a more coarse-grain repre-
sentation of a complex biochemical system of reactions 
and binding processes as a composition of metabolic 
fluxes connected with stoichiometric and mass balance 
relations [19–23]. This methodology has been applied 
to prokaryotic and eukaryotic organisms on the level 
from individual pathways [19, 21, 23] to whole genome 
scale [24]. Most importantly, unlike enzymatic kinetic 
models, MFA explicitly relates the dynamics of metab-
olites to complex phenotypes [21, 25, 26]. This meth-
odology enables the discovery of control mechanisms 
emerging on the level of entire biochemical pathways 
and networks [20, 21, 27].

Typically, MFA computational models in clinical 
application studies include the basics of the carbon 
metabolism network (pyruvate metabolism, tri-car-
bon cycle, glyoxylate shunt, etc.) complemented with 
selected pathways from the amino acid, lipid or other 
types metabolic or signaling network elements if nec-
essary. With detail up to individual reactions, the 
models are just focused of specific aspects of the net-
works behavior and do not look into potentially more 
global metabolism changes. The limited opportuni-
ties provided by such type of modelling are illustrated 
by the study from Gregory et al. [28] who explored the 
impact of various FTL3 inhibitors on glutamine utiliza-
tion in patients with acute myeloid leukemia. Yet, the 
model was sufficient to assess flux changes caused by 
combined inhibitor application and to delineate glu-
tathione depletion as major mechanism of leukemic cell 
elimination.

The work of Karlstädt et  al. [29] is an example where 
multiple state-of-the-art methods of computational mod-
eling complement each other to address the complexity of 
the studied system. The authors analyzed cardiomyocyte 
glycolysis kinetics to reveal and elucidate the underlying 
control mechanisms at the metabolic and protein levels 
and experimentally validated predictions made in their 
in silico studies. They applied MFA to obtain the steady-
state flux distribution, which maximized ATP production 
in the muscle tissue [23]. The MFA analysis allowed them 
to quantify systems-wide contributions of individual 
reaction rates and perturbations in individual metabolic 
parameters. To overcome the inherent limitation of MFA 
not addressing changes in metabolite concentrations, the 
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simulated system was expanded with M–M-like equa-
tions. This allowed the authors to simulate metabolite 
concentrations and flux rates as a function of time and to 
predict steady-state fluxes and metabolite concentrations 
[29].

The human health state, being a specific case of a phe-
notype at a given point of a disease development trajec-
tory, can thus be analyzed using MFA in principle. Yet, 
at present, the formalism is not ready for this purpose. 
There are several issues. First, the number of param-
eters in MFA models grows linearly with the number 
of reactions. Although this makes MFA a more scal-
able approach to build mechanistic models of com-
plex systems, the number of parameters in biochemical 
reaction-oriented, detailed models is still enormous and 
finding proper values for them is problematic. Second, 
the metabolite concentrations typically used in MFA cal-
culations are not commonly available from clinical labo-
ratories. Third, at the same time, many biochemical and 
physiological parameters, such as urine albumin or blood 
pressure, currently measured in clinics, are not incorpo-
rated into MFA models.

The GMFA approach introduced in this work imple-
ments a number of methodical innovations that enhance 
the suitability of MFA for clinical applications. 

1	 To reduce the demand on the input data scale, we 
apply GMFA to a reduced, coarse-grain metabolic 
network, wherein individual metabolic entities/fluxes 
are grouped in accordance with biological processes.

2	 We map non-metabolic clinical modalities and meas-
urements onto the metabolic network.

3	 To make health states and their progression com-
parable across patients, we replace the time variable 
with the extent variable quantifying the degree of 
progression between two extreme health states—the 
healthy state and the fully manifested disease state, 
assuming quasi-linearity of metabolite concentration 
changes along the trajectory of states.

We applied our methodology to the analysis of observa-
tional data of two cross-sectional cohorts of diabetes type 
2 patients. We constructed a simplified metabolic map 
including key components of glucose and lipid metabo-
lism, onto which physiological characteristics, for exam-
ple, the pulse wave velocity and carotid intima-media 
thickness were mapped. With statistical rigor, we show 
that fluxes calculated with the data from patients are 
predictive for the development of individual ophthalmic 
complications in type 2 diabetes.

Methods
Study design and population data
To evaluate the applicability of the proposed methods to 
clinical data, we studied the EVAS multi-ethnic cohort of 
289 patients with type 2 diabetes visiting a tertiary medi-
cal center in Singapore [30] (data collected in 2015–2020) 
and the NHANES multi-ethnic multi-centre general 
population cohort obtained in the National Health and 
Nutrition Examination Survey carried out in the United 
States (data collected in 1999–2018) [31]. From the pool 
of 6652 available NHANES patients with type 2 diabe-
tes history, we selected only 517, whose measured data 
modalities sufficiently overlap with those of EVAS (see 
Table 1 for the list of respective NHANES variables).

In the EVAS patient cohort, we examined data with 
regards to diagnosis of ophthalmic complications of 
diabetes at baseline, as well as their development over a 
period of up to 3 years after enrolment into the cohort 
study (Table  2). In both the EVAS and the NHANES 
cohorts male and female participants were represented 
in equal proportion (Table  1). In the EVAS cohort the 
mean age was 54, the median duration of type 2 diabetes, 
hyperlipidemia and hypertension was 10, 7 and 6.5 years, 
respectively. In the NHANES cohort the mean age of the 
participants was 60, and the data on the hyperlipidemia 
and hypertension was unavailable. In the EVAS cohort, 
at the baseline time point, cataract and retinopathy 
were diagnosed in 118 (41.0%) and 88 (30.4 %) patients, 
respectively. In the NHANES cohort, diabetic retinopa-
thy was declared in 106 participants (20.5%), while the 
data on other ophthalmic complications was not col-
lected. In this cohort, retinopathy declaration was done 
by answering “yes” to the question “Has a doctor ever 
told you that diabetes has affected your eyes or that you 
had retinopathy?” (dataset variable diq080).

The summary biochemical characteristics of the patients 
are listed in Table  1. Similar to the earlier study [30], 
vascular functions of the EVAS patients were assessed. 
Table  3 provides the summary. The patients were char-
acterized by measuring the concentrations of C-reactive 
protein (CRP), reactive oxygen molecules (ROM) and oxi-
dized LDL (ox-LDL). Arterial stiffness was quantified by 
the pulse wave velocity (PWV), and the endothelial func-
tion was assessed with reactive hyperemia index (RHI).

Computational modeling
Generalized metabolic flux analysis (GMFA)
Following the MFA theory, a metabolic network system 
described by a set of M metabolite species ( i = 1...M ) 
and N reactions/connections (enumerated j = 1...N  ) 
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between the species, the stoichiometry matrix S (size 
M × N  ) inherently characterizes the metabolic system 
and is assumed to be independent of time. A metabolic 
state is defined as the set of concentration Xi of all M 
metabolites as well as of fluxes vj for all N reactions. The 
concentrations and fluxes changing in time (t) are related 
via the linear system of N flux balance equations:

Under a long-term smooth change along a trajectory 
between two metabolic states A and B is commonly 
quantified by the variable expressing the number of 
molecular transformations of one particular type that 
has to occur while the system transforms from state A 
to state B. By analogy with a single biochemical reaction 
progress, where this number is represented by a scalar 
variable ξ , termed the reaction extent, in a metabolic net-
work it is represented by a reaction extent vector.

Similar to Eq.  1 describing changes in time t, fluxes 
and metabolite concentration changes can then be 
expressed with respect to changes expressed in the 
units of the extent ξ:

(1)
d[Xi]

dt
=

∑
j

Si,jvj(t)

Table 1  Baseline clinical and biochemical characteristics of the observational cohort study

The combined patient cohort represents a group of 804 Type 2 diabetes mellitus patients. The EVAS data was originally published in [30]. The NHANES data is available 
in the official web portal of the National Health and Nutrition Examination Survey [31]

EVAS Variable NHANES variable EVAS summary NHANES summary

N total – 289 517

Males (%) riagender 144 (50) 257 (50)

Ethnicity: n (%)

 Chinese – 174 (60) NA

 Malays – 48 (17) NA

 Indians – 67 (23) NA

 Other ridreth1 0 517 (100)

Age years, Mean (SD) ridageyr 54.3 (11.14) 60 (14.68)

T2DM Duration, years, Median (IQR) did040 11 (5-17) 11 (5-18)

Hypertension duration years, Median (IQR) NA 6.5 (0-13) NA

Hyperlipidemia duration years, Median (IQR) NA 7 (2-13) NA

BMI kg/cm2, Mean (SD) bmxbmi 27.7 (4.99) 32.2 (7.33)

Systolic BP, mm Hg, Mean (SD) bpxsy 133.2 (14.78) 129.6 (20.12)

Fasting glucose mmol/L, mean (SD) lbxglu, lbxglusi 8.89 (3.18) 9.14 (3.80)

HbA1c %, mean (SD) diq280 8.60 (1.84) 7.47 (2.39)

Total Cholesterol mmol/L, Mean (SD) lbxtc, lbxtcsi 4.39 (1.09) 4.53 (1.09)

HDL-Cholesterol mmol/L, Mean (SD) lbdhdd, lbdhddsi 1.12 (0.30) 1.29 (0.36)

LDL-Cholesterol mmol/L, Mean (SD) lbdldl, lbdldlsi 2.51 (0.84) 2.53 (0.94)

Triglycerides mmol/L, Mean (SD) lbxtr, lbxtrsi 1.85 (2.17) 1.54 (0.82)

Creatinine mmol/L, Mean (SD) NA 74.2 (26.85) NA

Ferritin mmol/L, Mean (SD) NA 109.48 (123.43) NA

Table 2  Summary statistics of ophthalmic complications 
in the EVAS observational cohort study

The data was originally published in [30]

Variable Summary

Cataracts, n (%) 118 (41.0)

Diabetic retinopathy, n (%) 88 (30.4)

Table 3  Vascular function measurements in the observa-
tional cohort study

The data was originally published in [30]

Variable Summary

CRP, mg/L Median (IQR) 1.45(0.7–3.8)

ROM, Median(IQR) 271(241–313)

BAP, µ M Median(IQR) 2221(2061–2388)

Ox-LDL, IU/L Mean(Sd) 55.92(21.65)

CIMT, mm Mean(SD) 0.65(0.13)

LnRHI Mean(SD) 0.67(0.25)

Pulse Wave Velocity m/cm 8.35(1.74)
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A connection between the extent ξ , time t and metabo-
lite concentrations XA and XB (at states A and B, respec-
tively) can be described as follows:

Under these assumptions, changes of metabolite concen-
trations and metabolic fluxes are fully defined as func-
tions of ξ . A single, continuous evolution path on the 
extent scale, includes all intermediate states of the sys-
tem, including the starting state A and the final state B. 
If we observe an ensemble of distinct metabolic systems 
(e.g., organisms) observed at states A and B, their evolu-
tion on the extent scale ξ would reflect their evolution in 
time. Thus the average metabolic state of the ensemble 
at a point on the scale ξ would reflect the average time it 
took the systems of the ensemble to reach that state. Such 
process can be described as ergodic.

If in the system, whose metabolic state evolution is linear 
(as defined in Eq. 2) and there is a non-metabolic variable 
in that system, which is also linear in the selected extent 
coordinate ξ , the system of Eq. 2 can be extended with the 
given non-metabolic component without violations of the 

(2)
d[Xi]

dξ
=

∑
j

Si,jvj(ξ)

(3)
X
B
= X

A
+

∫
B

A

ξdξ = X
A
+

∫
tB

tA

ξ
∂ξ

∂t
dt

= X
A
+

∫
B

A

Sv(ξ)dξ

initial assumptions. Then, in such cases, the extent vec-
tor, the vector of metabolic fluxes and the stoichiometry 
matrix can be termed the generalized extent, the general-
ized fluxes and the generalized stoichiometry, respectively. 
The quantities of generalized fluxes obtained as the esti-
mates to the observations of the individual’s measure-
ments are termed here the GMFA digital twins.

For further details, please refer to Online Appendix A.

Digital twin construction
Digital twins were created using the GMFA methodol-
ogy introduced in this study (see Online Appendix A for 
details). The construction and primary analysis of digital 
twins was implemented in Python (v.3.8) programming 
language.

The metabolic map and the generalized stoichiometry 
matrix were designed to include the metabolites meas-
ured in the study, to quantify the fluxes through the 
major biochemical and physiological pathways impli-
cated in diabetes (Fig. 1, Supplementary Table 1).

We extended the stoichiometry matrix by integrating 
in it the measured physiological parameters (see Appen-
dix A and Supplementary Table  1). We illustrate this 
approach by finding a stoichiometric coefficient connect-
ing the metabolic variable oxidized low-density lipopro-
tein (ox-LDL) with the physiological variable pulse wave 
velocity (Online Appendix B).

For each patient, a personalized digital model was con-
structed and initiated with all available metabolite and 

Fig. 1  Metabolic flux map used in the simulation of diabetes health states. The map is a graphical representation of the extended stoichiometry 
matrix in Supplementary Table 1. Nodes represent metabolites and physiological parameters. Edges represent generalized fluxes. The fluxes statisti-
cally associated (P<0.01 by the Wilcoxon–Mann–Whitney test) with proliferative retinopathy and cataract are highlighted with red and brown, 
respectively
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physiological readings measured from the patient. The 
missing data were imputed as population averages. Then, 
the best fit generalized flux vectors were obtained by the 
quadratic optimization procedure as the solution of the 
system of stoichiometric equations that minimizes the 
squared deviations between the vector of patient’s read-
ings and the vector of the metabolite concentrations and 
physiological values in the model. Hereby, the patient’s 
initial data were used as soft constraints. Their respective 
values in the model were permitted to deviate within ± 
20%. The constraints limiting the permitted flux values 
were introduced based on reference literature (see Online 
Appendix B for more details).

Distance metrics
The state of a given digital twin is defined by the vector 
of all generalized fluxes in the network at a given general-
ized extent. The proximity of two states can be assessed 
by applying a distance metric. We tested the Euclidean 
distance as well as the health state distance, a manifold-
based metric (see Online Appendix A for the formulas).

The diabetes evolution trajectory
The initial point of diabetes type 2 progression (state A) 
was selected to represent a healthy individual with demo-
graphic characteristics similar to the studied population. 
The end-point state (state B) represented advanced type 
2 diabetes, where common complications, such as hyper-
tension and nephropathy are fully manifested. Each state 
was characterized by measured values of key metabolite 
concentrations and quantitative physiological parameters 
of vascular health (Tables 1, 3. ).

On the progress scale ξ stretching between points A 
and B, we considered an individual patient’s health his-
tory as a smooth change of metabolite concentrations 
and physiological characteristics marked, in some cases, 
by developing diabetic complications.

Data pre‑processing
The EVAS dataset was collected as part of the earlier 
clinical study [30] as doctor’s notes in the electronic 
spreadsheets. The input variables, patient characteristics 
and the diagnoses, were compiled into a single comma-
separated tabular file (CSV), using the R programming 
environment (R v.3.4.4). The variables were classified into 
numerical (measurements) and categorical (classification 
and diagnoses).

The NHANES dataset was obtained from the official 
website as a set of XPT (SAS export format) table files 
containing cross-sectional data arranged by year and 
by the variable group. The files were converted to CSV 

tables, using the R programming environment. The data 
were aggregated across all the years and the available 
variables and saved in a single CSV file. The variables 
were interpreted according to the official description of 
the tables as categorical or numerical. NA values were 
assigned to missing data.

Statistical methods
All the statistical methods were implemented using the R 
programming environment (R v.3.4.4).

Wilcoxon–Mann–Whitney tests
Each component of the metabolite and flux vectors 
was then evaluated as an independent predictor of the 
patient classification by one of the following pheno-
types representing diabetic complications detected by 
the sample collections time point: diabetic retinopa-
thy or cataract. Statistical associations between each 
vector component and each phenotype were assessed 
using the Wilcoxon–Mann–Whitney non-parametric 
test with the null hypothesis of the vector components 
being equal between two groups patients correspond-
ing to two phenotypic (disease) states. Multiple hypoth-
esis testing bias was controlled via the false discovery 
rate assessment. The false discovery rate was calculated 
according to the Benjamini–Yekutieli procedure [32], 
and the P-values with FDR not exceeding 15% were 
reported.

Logistic regression models
To identify at the baseline and to predict the develop-
ment of the ophthalmic complications at the follow-up 
time points, we employed the binomial logistic regres-
sion model, implemented in the R v.3.4.4 standard library 
as a Generalized Linear Model (the glm.fit function) [33].

The magnitudes and signs of individual’s generalized 
fluxes, obtained at the baseline time point were used as 
the inputs of the model. The diagnosis at the follow-up 
time was taken as the expected output to obtain the best 
logistic regression coefficients parametrizing the model.

The quality of the model was assessed using the 
Receiver Operating Characteristic (ROC) and the c-index 
(area under the curve, AUC), as implemented in the R 
package pROC [34, 35].

To further increase the specificity of the models, sam-
ples with the intermediate values of the calculated logis-
tic function (the “twilight zone” exclusion) were removed 
from the analysis. We tested the results obtained from 
removing the samples from the following percentile 
ranges: 45 to 55, 40 to 60, 35 to 65, 33 to 67, and 25 to 75. 
At each range, we obtained ROC estimates as described 
above.
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Resampling procedures
To balance the test design to ensure robustness, we sam-
pled 50% of positive cases and an equal number of nega-
tive cases to train the logistic model We used the other 
50% of the cases to test it. We repeated the sampling 50 
times to obtain median estimates of the ROC curves.

Linear regression between the flux distance metric 
and the flux‑based diagnosis estimate
To quantify the correlations between the health state dis-
tance metric and diagnosis of the patients, we applied a 
binomial logistic regression model in R v.3.4.4 [33]. We 
used the values of metabolic fluxes as the input vari-
ables of the model. The binary output variable was the 
diagnosis of the patient at the baseline time point. The 
parameters of the logistic function were fitted as the 
optimal weights of the extended metabolic fluxes mini-
mizing deviation between the observed and expected 
outputs across the patient cohort. The diagnosis variable 
received the value of 1 if the patient was diagnosed with 
a particular syndrome (here, retinopathy and cataract) 
and 0 otherwise. Since the patient cohort contained une-
qual number of patients with and without diagnosis, we 
applied statistical resampling to obtain balanced design 
to train the logistic regression model. Mean values of the 
regression coefficients obtained after 10 resampling steps 
were used as a basis for subsequent evaluation of the 
patient’s diagnosis. Evaluating the parameterized logis-
tic function on a particular patient resulted in the value 
between 0 and 1, estimating the expected likelihood that 
the patient’s diagnosis was positive. Across the patients, 
correlation between the value of the logistic function 
with the distance metric was evaluated with the Kendall’s 
τ coefficient and test statistic.

Results
Application of the GMFA framework to diabetes patients’ 
data reveals metabolic and physiological mechanisms 
associated with diabetic retinopathy and cataract 
progression
We considered ophthalmic complications of type 2 dia-
betes of our patient cohort [30] to explore metabolic and 
physiological pathways, using the proposed methodol-
ogy. The results are presented in Tables 4 and 5 (see also 
Fig. 1).

Analysis of metabolite concentrations and physiologi-
cal measurements (the results are shown in Table  4) 
revealed that pulse wave velocity (PWV, P = 1.3e−3) and 
reactive hyperemia index (RHI; P = 1.8e−3) were sig-
nificantly increased in diabetes patients with proliferative 
diabetic retinopathy. Similar observations were reported 
earlier [36–38]. Cataract presence was significantly asso-
ciated with carotid intima-media thickness (CIMT; P = 
2.3e−5 in the right carotid artery and P = 1.1e−3 in the 
left one) and glycated haemoglobin (HbA1c; P = 2.3e−3). 
Analysis of statistical associations with metabolic fluxes 
provided more information than metabolites and physi-
ological parameters alone (results shown in Table 5).

In the case of diabetic retinopathy, we found that the 
rate of protein consumption and protein-dependent 
decrease of urine pH are the parameter significantly 
associated with the diagnosis (P = 2.4e−5). Studies 
report equivocal effects of protein consumption on 
diabetic retinopathy development [39]. At the same 
time, there is a consensus with respect to the role of 
high protein consumption in diabetic microvascular 
changes [40], which can also be observed in associa-
tions with diabetic nephropathy and has been reflected 

Table 4  Statistically significant associations between indi-
vidual metabolites and physiological variables and oph-
thalmic complications in type 2 diabetes patients

The P-values were obtained by using the Wilcoxon–Mann–Whitney statistical 
test with null hypothesis that the median flux values are identical in two groups 
of patients: with the phenotype being present or absent. The FDR was calculated 
using the Benjamini–Yekutieli P-value adjustment method for multiple 
hypothesis testing [32]

Metabolite Phenotype P FDR

Pulse wave velocity Proliferative retinopathy 1.3E−3 0.076

RHI 1.8E−3 0.099

CIMT-avg-R Cataract 2.3E−5 2.0E−3

CIMT-avg-L 1.1E−4 8.7E−3

HbA1c 2.3E−3 0.11

Table 5  Statistically significant associations between the 
fluxes connecting metabolic and physiological variables 
and ophthalmic complications in type 2 diabetes patients

The P-values were obtained by using the Wilcoxon–Mann–Whitney statistical 
test with null hypothesis that the median flux values are identical in two groups 
of patients: with the phenotype being present or absent. The FDR was calculated 
using the Benjamini–Yekutieli P-value adjustment method for multiple 
hypothesis testing [32]

Flux Phenotype P FDR

Food → Protein Proliferative 
retinopathy

2.4E−5 2.0E−3

Protein → Urine − pH 2.4E−5 2.0E−3

HDL+ VLDL → LDL 9.7E−6 1.0E−3

Inflammation → Ferritin 1.9E−4 0.01

RHI → CIMT − avg− L 4.9E−4 0.027

Ox − LDL → Pulse − wave − velocity 2.8E−3 0.096

RHI → CIMT − avg− R Cataract 1.1E−4 7.1E−3

Bilirubin → Bile 2.3E−3 0.089

Inflammation → Ferritin 3.5E−3 0.096
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in clinical recommendations [41, 42]. Urine pH is con-
sidered an independent negative prognostic and pro-
gression indicator of type 2 diabetes [43]. At the same 
time, the ammonium ions concentration is considered 
a factor significantly affecting urine pH of diabetes 
patients [44]. Another flux of significance was conver-
sion of high-density lipoprotein cholesterol (HDL) into 
low-density lipoproteins (LDL) localized in the liver 
(P = 9.7e−6). Unlike many other tissues producing 
cholesterol locally, for e.g., the retina, the cholesterol 
produced by the liver is transported via the blood-
stream [45]. LDL and the HDL/LDL ratios are known 
as significant factors of diabetic retinopathy progres-
sion [45–47]. The flux quantifying the effect of oxi-
dized LDL (ox-LDL) on PWV was also significant (P 
= 2.8e−3). LDL oxidation and lipid oxidation in gen-
eral are important mediators implicated in retinopathy 
[46]. Iron and ferritin play an important role in oxida-
tion reactions affecting diabetic retinopathy progres-
sion [48], in particular, by producing ox-LDL [49], and 
our results support that (P = 1.9e−4).

Development of cataract was significantly associ-
ated with the extended flux leading from the reactive 
hyperemia index (RHI) characterizing the vascular 
health state, to carotid intima-media thickness (P = 
1.1e−4). Notably, we also found that the flux leading 
to induction of ferritin and the flux converting biliru-
bin to bile, were also associated with cataract develop-
ment (P = 3.5e−3 and P = 2.3e−3, respectively). Both 
associations were not detected on the level of indi-
vidual metabolites. Recently, evidence was found that 
blood bilirubin might be a compound protecting retina 
from degradation in diabetes patients [50–52].

Thus, we observed that with respect to specific 
clinical phenotypes, statistical results obtained with 

metabolic and physiological flux models are not con-
tradicting the results obtained with metabolic and 
physiological variables alone. Moreover, flux models 
have the potential to provide more biomarkers charac-
terizing the disease and to improve statistical power. 
The ability of flux models to describe additional 
details of long-term dynamics is complementary to the 
descriptive power of metabolites alone. These conclu-
sions confirm the applicability of the computational 
framework provided by GMFA to address the practi-
cal needs of integrative biochemical, physiological and 
clinical data analysis for holistic assessment.

The distance between metabolic health states quantifies 
the progression of vascular diabetic complications
We used the extent variable ξ to measure the state evolu-
tion and disease progression. Since the states are defined 
in terms of generalized fluxes changing along the ξ scale, 
the distance metric on that scale should be expressed 
as a function of generalized fluxes and needs to reflect 
both qualitative changes and quantitative differences 
observed upon transitions between any two states. Thus, 
irrespective of individual variations in time scales of dis-
ease progression, health state and the extent variable ξ 
are expected to reflect disease-associated physiological 
changes observed in the generalized flux profiles across 
the patient cohort.

We analyzed the influence of choosing any of four defi-
nitions of the distance between health states:

–	 Diabetes duration
–	 HbA1c value evolution
–	 The Euclidean distance between the patient flux pro-

files
–	 The health state distance, the manifold-based metric

Table 6  Correlation analysis of physiological parameters of diabetes complications with the health state progression 
extent metric and diabetes duration in diabetes patients

The analysis was done using the Kendall’s τ  correlation

Parameter Diabetes duration Serum HbA1c Euclidean distance Health state distance

τ P(τ) τ P(τ) τ P(τ) τ P(τ)

HbA1c 0.20 1.3E−06 1.00 3.3E−137 − 0.09 3.0E−02 0.14 6.5E−04

Reactive hyperemia index 0.00 9.6E−01 − 0.08 3.9E−02 0.09 2.2E−02 0.13 7.9E−04

Systolic blood pressure 0.12 2.0E−03 0.01 8.2E−01 0.08 3.9E−02 0.12 3.0E−03

Left-side CIMT 0.15 4.8E−04 0.05 1.9E−01 − 0.11 5.1E−03 0.07 7.0E−02

Average CIMT 0.14 7.1E−04 0.03 4.0E−01 −0.09 2.7E−02 −0.08 5.9E−02

Right CIMT 0.11 7.5E−03 − 0.02 6.5E−01 0.08 4.5E−02 − 0.11 9.3E−03

Patient’s age 0.26 1.2E−10 − 0.07 9.7E−02 − 0.10 1.7E−02 − 0.11 6.2E−03

Body mass index 0.01 8.3E−01 0.08 3.5E−02 0.09 2.9E−02 − 0.12 2.7E−03

Urine albumin/creatinine ratio 0.12 9.4E−03 0.25 1.9E−08 − 0.07 9.4E−02 − 0.12 7.5E−03

Pulse wave velocity 0.25 5.9E−10 0.10 9.6E−03 0.09 2.2E−02 − 0.13 1.3E−03
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The results of this analysis are presented in Tables  6, 7 
and 8.

When considering all diabetes patients (Table  6), we 
find that all four distance definitions deliver qualita-
tively similar results. Regardless along which descriptor 
the disease progression is measured, it strongly corre-
lates with patient age, followed by PWV, HbA1c, CIMT 
values, and the urine albumin/creatinine ratio. Notably, 
the two flux-derived distance metrics showed signifi-
cant, but consistently lower correlation coefficient values 
for these variables compared with diabetes duration and 
serum HbA1c. Yet more importantly, we observe addi-
tional significant correlations between the health dis-
tance metric and the disease progression hits; e.g., hits 
for RHI ( τ = 0.13 , P = 7.9e − 4 ) and BMI ( τ = −0.12 , 
P = 2.7e − 3 ) are not seen for the other metrics.

However, qualitatively different performances of the 
four distance metrics are observed if we explore the 
development of diabetic complications. In Table  7 (cor-
relation with diabetic retinopathy), as a trend, the cor-
relation coefficients and their significance measured for 
the Euclidean distance and our flux distance metric are 
consistently better than those for diabetes duration and 
HbA1c value evolution. Strikingly, the flux distance met-
ric outperforms the Euclidean distance in both absolute 
correlation and significance in all but three cases (aver-
age and right-side CIMT, patient age). The flux distance 
metric significantly correlates with all the parameters, 
while all other distance measures are not significantly 
associated with some of them. Diabetes duration cor-
related only with patient age ( τ = 0.23 , P = 2.5e − 3 ), 
CIMT ( τ = 0.15 , P = 4.5e − 2 for the right carotid 
artery) and HbA1c ( τ = 0.15 , P = 4.6e − 2 ), while the 

Table 7  Correlation analysis of physiological parameters of diabetes complications with the health state progression 
extent metric and diabetes duration in patients with diabetic retinopathy

The analysis was done using the Kendall’s τ  correlation

Parameter Diabetes duration Serum HbA1c Euclidean distance Health state distance

τ P(τ) τ P(τ) τ P(τ) τ P(τ)

Systolic blood pressure 0.07 3.1E−01 − 0.01 9.1E−01 − 0.14 5.1E−02 0.23 1.7E−03

Average CIMT 0.10 1.9E−01 0.15 4.7E−02 − 0.24 9.9E−04 0.22 2.7E−03

Left-side CIMT 0.08 3.1E−01 0.12 1.2E−01 − 0.15 4.4E−02 0.22 3.7E−03

HbA1c 0.15 4.6E−02 1.00 3.5E−42 − 0.18 1.5E−02 0.21 3.5E−03

Right CIMT 0.15 4.5E−02 0.08 3.0E−01 − 0.20 7.5E−03 − 0.17 2.6E−02

Patient’s age 0.23 2.5E−03 − 0.07 3.7E−01 − 0.17 2.0E−02 − 0.18 1.2E−02

Body mass index − 0.08 3.0E−01 − 0.01 8.6E−01 − 0.18 1.1E−02 − 0.21 4.5E−03

Pulse wave velocity 0.10 1.6E−01 0.06 3.8E−01 0.16 3.2E−02 − 0.21 4.1E−03

Reactive hyperemia index 0.02 8.2E−01 − 0.05 4.8E−01 0.15 4.6E−02 − 0.23 1.7E−03

Urine albumin/creatinine ratio − 0.03 7.2E−01 0.15 8.3E−02 − 0.21 1.3E−02 − 0.24 3.5E−03

Table 8  Correlation analysis of physiological parameters of diabetes complications with the health state progression 
extent metric and diabetes duration in diabetes patients with cataract

The analysis was done using the Kendall’s τ  correlation

Parameter Diabetes duration Serum HbA1c Euclidean distance Health state distance

τ P(τ) τ P(τ) τ P(τ) τ P(τ)

Systolic blood pressure 0.18 3.9E−03 0.05 4.6E−01 − 0.12 4.6E−02 0.20 1.7E−03

HbA1c 0.19 3.1E−03 1.00 2.3E−56 0.13 4.2E−02 0.17 5.6E−03

Left-side CIMT − 0.02 7.3E−01 0.03 6.1E−01 − 0.12 5.5E−02 0.14 3.2E−02

Average CIMT 0.00 1.0E+00 0.02 7.4E−01 − 0.10 1.3E−01 − 0.14 2.3E−02

Patient’s age 0.16 1.1E−02 − 0.12 5.5E−02 0.12 4.9E−02 − 0.15 1.5E−02

Urine albumin/creatinine ratio 0.14 5.0E−02 0.23 1.2E−03 − 0.14 5.1E−02 − 0.17 1.7E−02

Body mass index 0.07 2.9E−01 0.07 2.7E−01 − 0.16 9.1E−03 − 0.18 4.1E−03

Right CIMT 0.06 3.8E−01 − 0.05 4.8E−01 0.16 1.5E−02 − 0.18 5.5E−03

Pulse wave velocity 0.27 2.2E−05 0.12 6.5E−02 0.17 5.7E−03 − 0.19 2.1E−03

Reactive hyperemia index − 0.02 8.0E−01 − 0.07 2.7E−01 0.17 5.7E−03 − 0.20 1.8E−03
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health distance metric correlated with all the parameters 
( |τ | ≥ 0.17 , P ≤ 2.6e-2).

Results for the diabetic patients with cataracts (see 
Table  6) reveal the same pattern. We find that diabetes 
duration and HbA1c do not significantly correlate with 
several listed physiological parameters, whereas the two 
flux-defined distances do. Hereby, for patients with com-
plications, the metric from Equation  6 performs better 
than the Euclidean distance in terms of absolute correla-
tion and significance in all but one case (left-side CIMT).

We tested whether the patients’ health state (defined by 
the generalized flux vector) can correlate with the trend 
towards an ophthalmic complication. As the output of 
the model on each patient, the value of the logistic func-
tion, ranging between 0 and 1, quantified the probability 
of the present patient’s diagnosis. This value is plotted 
against the flux distance metric in Fig. 2. We observe that 
the distance metric strongly correlates with the logistic 
function output for retinopathy ( τ = 0.39 , P = 8.0e − 12 ; 
see Fig.  2A) and cataract ( τ = 0.43 , P = 6.6e − 12 ; see 
Fig. 2B). Across all patient groups, with and without dia-
betic complications, the positive correlations indicate the 
trend of increasingly poor identification of the diagnosis 
for the patients, whose flux profiles are further away from 
the complication-free status.

Using the distance metric of the flux profiles and the 
generalized flux-driven syndrome identification, patients 
with high and low risk of complications can be classi-
fied into the respective high- and low-risk groups. Here, 
we assigned the patients to the high-risk group by their 
proximity to the diagnosed syndrome state if they fall 
into the upper quartile simultaneously by (i) their logis-
tic function value and (ii) the distance (see the distance 
metric above) between their current health states (flux 
profiles) and the complication-free state. This group cor-
responds to the top-right quadrant in Fig. 2A and B. The 
patients of the low-risk group were defined by the values 
of their logistic function and the distance metric corre-
sponding to the lower quartile (the bottom-left) quadrant 
in Fig.  2A, B), corresponding to the health states with 
the highest rates of diabetes complications. Confirming 

the results of the correlation analysis, the low-risk and 
the high-risk patients demonstrated a strong statistical 
association with their actual diagnoses of retinopathy 
( P = 5.1e − 5 ) and cataract ( P = 1.3e − 5 ), as shown in 
Table 9.

To characterize the high- and low-risk groups, we cal-
culated their median flux profiles and displayed them as 
graphs with edge weights (representing the fluxes mag-
nitudes) proportional to the normalized deviation from 
their median values in the entire patient cohort. These 
values are displayed in a graphical form in Fig.  3. We 
observe that the flux rates immediately upstream and 
downstream ox-LDL are commonly decreased in the 
low-risk group, relative to both high-risk groups. High-
risk retinopathy patients could be differentiated from the 
high-risk cataract patients by increased fluxes upstream 
creatinine, increased liver cholesterol metabolism, and 
increased haemoglobin-related fluxes. High-risk cata-
ract patients are specifically characterized with increases 
in haemoglobin glycation fluxes leading from ROM to 
HbA1c and with hs-CRP induction.

Thus, we can conclude that the distance between a 
patient’s flux profile and a typical flux profile of a compli-
cation-free diabetes patient is indicative of the degree to 
which a particular diabetic complication is (or potentially 
will be) manifested in a given patient.

Together these results show that, for a given diabetic 
complication, it is possible to find such a disease progres-
sion metric that would better correlate with the evolu-
tion of key progression characteristics than direct clinical 
parameters, such as diabetes duration or HbA1c values. 
Further analysis of the flux profiles may uncover the 
mechanisms underlying syndrome development.

Digital twins can indicate the presence of ophthalmic 
complications of diabetes at the baseline and predict their 
development 3 years in the future
To explore the potential of using the GMFA-based digi-
tal twins as diagnostic and predictive tools, we used 
them as inputs of logistic regression models for detection 

Fig. 2  Correlation of the health state distance metric with diagnosis. For the diabetes patients diagnosed with retinopathy (A) and cataract (B) 
logistic regression model was parameterized to discriminate the present patient’s diagnosis, based on the computed values of the extended fluxes. 
This value is plotted along the vertical axis as the model-based diagnosis prediction. For each patient, we also calculated the distance metric of 
proximity of each individual patient to the health state without diabetic complications. The larger is the distance metric, the further is the estimated 
extent of patient’s progression towards a particular complication. The distance metric is plotted along the horizontal axis. We tested the hypothesis 
that distance of the patient’s health state progression and the predicted diagnosis, using the Kendall’s τ rank correlation coefficient. The results 
indicate significant statistical association between the two for both retinopathy ( τ = 0.39 , P = 8.0e − 12 ) and cataract ( τ = 0.43,P = 6.6e − 12 ). 
The dashed lines shown the 25% and the 75% percentiles of the variables plotted along each of the axes. The patients with complications under 
the lower percentile boundaries in the lower axis could be interpreted as the ones whose generalized flux profiles are close to non-complicated 
diabetes. The patients without complications above the upper percentile boundaries in the lower axis could be interpreted as having generalized 
flux profiles are close to the profiles of patients with manifested respective diabetic complications

(See figure on next page.)
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Fig. 2  (See legend on previous page.)
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existing and predicting future occurrence of ophthalmic 
complications of type 2 diabetes in the EVAS dataset (see 
Table  2 for summary statistics). The analysis schema is 
shown in Fig. 4.

The logistic regression models could identify in the 
population patient having retinopathy (AUC 0.84, SN = 
80%, SP = 71%) and cataract (AUC 0.79, SN = 80%, SP = 
62%). The results are reported in Fig. 5 (A and B, respec-
tively). Sub-classifying all the retinopathy cases into pro-
liferative and non-proliferative subtypes resulted in an 
increased performance for each of subtype: AUC 0.95 
(SN = 92%, SP = 94%) for proliferative retinopathy and 
AUC 0.84 (SN = 80%, SP = 70%) for non-proliferative 
(Fig. 5C, D). To ensure the robustness of our results, we 
carried out the analysis by: (1) statistical resampling (50 
iterations), (2) balancing the training and the testing set 
design to provide equal number of positive and negative 
cases. The results are shown in Fig. 5E and F.

Our analysis of relationship between the patient’s 
health state distance and the ability of the logistic model 
to identify the patient’s risk group (Fig.  2) suggests that 
there are patients with intermediate metabolic pheno-
type, whose classification into the risk groups is difficult. 
We took into account the potential impact of this inter-
mediate sub-population on the performance metrics. 
We varied the fraction of patients with intermediate 

phenotypes in the training and the testing datasets by 
iteratively selecting only the patients whose distance 
metric and logistic function value (see Fig.  2) were 
either higher or lower than a given quantile value. This 
cutoff quantile value was iterated in the range from the 
30th/70th percentile (40% of the patients with intermedi-
ate phenotypes excluded) to the 50th (no patients were 
excluded). At each iteration we quantified the observed 
AUC values. The results shown in Figs. 5E and 5F dem-
onstrate that the reported median AUC values across 
all the tested scenarios are within the confidence range 
( ±1IQR).

To validate our findings in an independent patient 
cohort, we analyzed the National Health and Nutrition 
Examination Survey (NHANES) dataset, which included 
patient survey and measurements data collected across 
the United States [31]. From the NHANES data study, 
we selected a total of 517 subjects diagnosed with T2DM 
diabetes and characterized with the set of parameters 
matching those of the Singapore EVAS dataset (Appen-
dix C, Supplementary File). Summary statistics indicated 
that the two populations were comparable with respect 
to most of the parameters (Table 1). The differences were 
observed in ethnicity, age distribution and incomplete 
information on the hypertension and hyperlipidemia in 
the NHANES cohort. Moreover, the rate of retinopathy 
in the NHANES cohort was twice lower than the EVAS 
cohort (20.5% vs 41%, respectively). When we repro-
duced identification of patients diabetic retinopathy in 
the NHANES dataset, using the logistic regression model 
similar to that of the EVAS dataset, we observed a mark-
edly lower performance in NHANES (AUC 0.67). To test 
if the drop in performance was due to a lower homoge-
neity of the NHANES population, compared to EVAS, 
we separated the NHANES patients into two subgroups: 
one tightly matching EVAS patients by age (237 patients 
aged up to 60 y.o) the remaining subgroup containing 
more dissimilar patients (280 patients aged above 60). 
The logistic regression model in the first group demon-
strated the performance close to that in the EVAS cohort 
(AUC 0.78, Fig. 5G). At the same time, the performance 
in the second group remained relatively low (AUC 0.66, 
Fig. 5H). These results indicated that, despite the dispro-
portion in the retinopathy cases across the multi-ethnic 

Table 9  Association of the patient risk group with diag-
nosed diabetic retinopathy and cataract

Patients were considered low risk when their flux profiles and their flux-driven 
syndrome prediction are within the lower quartiles (the bottom left quadrant 
shown in Fig. 2). The patients, whose flux profiles and their flux-driven syndrome 
prediction are within the higher quartiles (the top right quadrant shown 
in Fig. 2), were considered high risk. Both diagnoses demonstrate a highly 
significant co-incidence with the risk groups ( P ≤ 5.1e − 5 , Fisher’s exact test)

Syndrome Risk group Patients without 
diagnosis

Patients 
with diag‑
nosis

Retinopathy Low risk 27 2

High risk 17 20

Fisher’s exact test P = 5.1e − 5

Cataract Low risk 22 2

High risk 9 19

Fisher’s exact test P = 1.3e − 5

(See figure on next page.)
Fig. 3  Graphical representation of the flux states of the diabetes patients with low risk of ocular complications (A), high-risk retinopathy (B) and 
high-risk cataract (C). The flux states were obtained by calculating the median flux magnitudes within the risk groups. The magnitudes are displayed 
normalized relative to the median across the entire studied population of diabetes patients. The blue and red edge colors in the graph represent 
the median flux values lower or higher than the population median, respectively. Edge thickness represents the relative magnitude of difference 
between the absolute values of the group median and the population median value of a particular flux. The groups are defined according to Table 9 
and Fig. 2 as follows: A low-risk group for retinopathy and cataract (the lower quartile in Fig. 2A and 2B); B high risk retinopathy group (the upper 
quartile in Fig. 2A); C high risk cataract group (the upper quartile in Fig. 2B)
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Fig. 3  (See legend on previous page.)
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Fig. 4  GMFA Digital Twins construction and evaluation. Metabolic and non-metabolic physiological variables were obtained from T2DM patients. 
The GMFA methodology was applied to construct digital twins representing individual patients’ health states at the baseline time point (1). The 
distance between the health state of the patient to the advanced disease state correlates with the risk of developing T2DM complications (2). By 
combining the GMFA digital twin profiles with the demographic data (age, diabetes duration) we constructed logistic regression models, which can 
identify patients with T2DM complications (3) and the patients who will develop them in the future (4)
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populations, a good reproducibility of our methods can 
be achieved when key patients characteristics, such as 
age, are matched across the cohorts.

Having demonstrated the evidence of GMFA-based 
digital twin models indicating the presence of T2DM 
ophthalmic complications, we tested if the models can 
be used to predict development of these complications in 
the future, within 3 years from the baseline time point. 
The results are presented in Fig. 6.

We found that the GMFA models can predict all retin-
opathy (AUC 0.81, SN = 78%, SP = 70%, Fig.  6A) and 
cataract (AUC 0.93, SN = 87%, SP = 95%, Fig. 6B) cases. 
For non-proliferative retinopathy alone, we observed a 
slightly better performance (AUC 0.81, SN = 79%, SP = 
70%, Fig.  6C). For proliferative retinopathy the analysis 

could not be performed due to the insufficient number of 
patients (4 patients) in this group.

Discussion
Over the past 30 years, numerous systems biology 
based tools have been developed in the academia and 
been used in the pharmaceutical and biotechnology 
industry, for example, for optimization of fermenta-
tion processes. Metabolic flux analysis (MFA) is a flex-
ible method of systems biology that have been tested in 
applications that span from bacterial models to higher 
eukaryotes [19–23]. However, these methods, which 
were based on unicellular biological models, were 
not easily scalable to tissues and organs. In particular, 

Fig. 5  Performance of GMFA-based logistic regression models in identifying T2DM patients with present ophthalmic complications in the EVAS 
patient cohort and their validation in the NHANES cohort. Logistic regression models were built using the generalized fluxes (GMFA), patient’s age 
and diabetes duration as the input variables. The cross-sectional data from the EVAS patient cohort was used to evaluate the performance of the 
algorithm in detection of ophthalmic complications based on biochemical and physiological inputs. The regression models output the probability 
of the patient having diabetic retinopathy (A) or cataract (B). The retinopathy cases were further sub-classified into proliferative (C) and non-
proliferative (D) subtypes. The models predicted diagnoses made at the baseline time point. The performance of the models is assessed with the 
area under the ROC curve (AUC). Variation in the AUC values for retinopathy (E) and cataract (F) was assessed via resampled training and testing 
datasets (50% positive rate in each). Median AUC values and the IQR-based confidence intervals are reported for 50 resampling iterations per each 
AUC estimate. The tolerance to poorly discriminated cases was tested by filtering the patients of the intermediate phenotypes by the health state 
distance and risk prediction logistic function (see Fig. 2 and the Results section for details). Percentile-based exclusion of patients with the interme-
diate phenotypes resulted in a slightly improved performance of the predictive models: from AUC 0.72 (retinopathy) and AUC 0.69 (cataract) with 
no filtering (Quantile 50* cutoff ) to AUC 0.79 (retinopathy) and AUC 0.76 (cataract) when retaining 60% of patients (Quantile 30 cutoff ) and filtering 
out the remaining 40% of patients with intermediate phenotypes. Retinopathy detection performance was validated by applying the GMFA models 
to the cross-section data from the NHANES patient cohort (G, H). For the subgroup of the NHANES patients with diabetes history duration within 
the range similar (AUC 0.78) to that of the EVAS cohort (G), the AUC value was similar to that of the EVAS cohort (A). For the NHANES patients with 
diabetes history spanning longer than 25 years, the AUC dropped to 0.66 (H)
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modeling human physiology in a clinical context proved 
to be extra challenging.

Precision medicine and digital health initiatives are 
driving the adoption of advanced computational tools 
for holistic analysis and interpretation of individual 
patients’ physiological and health states. At the same 
time, clinical science is trending towards a focus on 
an integrative picture of personalized health. Today, a 
holistic assessment of a person’s health state implies 
integration of detailed profiles of multiple physiologi-
cally inter-connected subsystems: metabolism, cel-
lular signalling, immune responses, nervous system, 
body structure and microbiome. At present, there is no 
methodological framework to unify quantitative mod-
elling of all these components.

In the present study, we describe the General-
ized Metabolic Flux Analysis (GMFA). The combined 
impact of several technical innovations and novel con-
cepts of GMFA enables the computational simulation 
of complex, clinically relevant networks. The critical 
points are:

–	 By pooling metabolites and fluxes along the biological 
processes and mechanisms, we both keep the biologi-
cal logic of the systems and, at the same time, greatly 
simplify the network, making it much more coarse-
grained.

–	 We further enhance the information content of the 
model network by mapping non-metabolic clinical 

Fig. 6  Performance of GMFA-based logistic regression models in predicting development of ophthalmic complications in T2DM patients within 3 
years. Logistic regression models were built using the generalized fluxes (GMFA), patient’s age and diabetes duration as the input variables, at the 
baseline. The regression models output the probability of the patient to develop any subtype of retinopathy (A), cataract (B), or a non-proliferative 
retinopathy. The retinopathy cases were further sub-classified into proliferative (not shown) and non-proliferative (C) subtypes within 3 years after 
the baseline time point
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modalities and measured clinical laboratory param-
eters onto the network.

–	 We analyze the system’s trajectories along the disease 
extent progression coordinate, rather than the time 
scale. In this way, the progression of various patients 
along the path from health to the manifested disease 
state becomes comparable.

–	 We calculate the system fluxes by quadratic optimiza-
tion using the clinical readings as soft constraints. The 
optimality of the system’s profile in the space of gen-
eralized fluxes is formulated as the best fit ensuring 
the minimal squared difference between the observed 
measured variables and their values predicted from the 
given flux solution under constraints.

By applying GMFA to accessible clinical data we cre-
ate descriptive and predictive personalized mathemati-
cal models of an individual patient’s metabolic state. A 
digital twin can be defined as a mechanistic numerical 
model of a particular patient calibrated to the individ-
ual’s phenotypic and clinical data at a particular time 
point. Thus, GMFA is used as a novel approach for cre-
ating digital twins based on evaluating observed meta-
bolic and physiological data.

Within the GMFA framework, we analyzed two 
cohorts of diabetes type 2 patients, EVAS [30] and 
NHANES [31].

We built a coarse-grained metabolic map (Fig. 1) that 
includes non-metabolic edges related to PWV, CIMT, 
RHI and other clinical characteristics. We quantified the 
generalized metabolic fluxes in the system individually 
for each patient. Our correlation analysis demonstrates 
that application of GMFA reveals critical mechanisms 
associated with diabetic retinopathy and cataract pro-
gression (Tables 4, 5; Fig. 1). For example, we found that, 
in the course of retinopathy, chronic changes in the PWV 
are mediated via LDL oxidation stimulated by ferritin or 
that fluxes involving RHI, CIMT, ferritin and bilirubin 
are associated with cataract development. Further we 
found that distances between the metabolic health states 
of patients quantify the progression of diabetic vascu-
lar complications (Tables 6, 8; Fig. 2) and that the digital 
twins can be used for the prediction of their outcomes 
(Fig. 5).

The observed associations correlate with recent clini-
cal and experimental studies reporting similar conclu-
sions [45, 46, 48, 49]. In addition, our analysis supported 
earlier studies on the mechanisms relating nitric oxide 
production, reactive hyperemia index and atherosclerosis 
[53–56].

Thus, the GMFA method provides mechanistic insights 
into disease progression along a path in the health states 
space and allows us to delineate subgroups of patients 

that can be predicted to develop diabetic eye complica-
tions 2. This allowed us to build predictive model that 
can infer the present phenotypic state of the patient (the 
diagnosis made by the ophthalmologist) from the infor-
mation on the patient’s metabolic dynamics provided by 
GMFA (Fig.  5). We also demonstrated that our models 
can predict development of ophthalmic complications in 
T2DM patients within 3 years from the baseline (Fig. 6). 
We processed the NHANES patient data with the same 
computational model developed for the EVAS data analy-
sis without any further adaptation and we obtained very 
comparable results despite the great differences between 
the two cohorts (geographic location, ethnicity, age, etc.).

Our GMFA based method for creating digital twins 
as representations of health states that vary on the scale 
of the progress extent, has the advantage of relating the 
information obtained in a cross-sectional study of the 
population with evolution of health state in time. In 
the future, this approach may be further developed to 
evaluate different health state transitions with respect 
to reversibility. This would bring a novel perspective on 
options for chronic disease management.

In the last decade, there has been an upsurge in the 
use of data-driven machine learning models for the pre-
diction of clinical outcomes. Machine learning provides 
prediction on outcomes of complex biological processes 
by ploughing through databases of inputs (exposures) 
and outputs (outcomes) for a given problem. These 
models bypass the need to understand complex mecha-
nisms. In contrast, mechanistic modeling involves the 
generation of novel hypotheses for causal mechanisms 
that are generated through clinical observations in the 
datasets. A mechanistic model obtained by fitting its 
parameters to the available observations, would com-
plement data-driven analyses by reducing the require-
ments for the data set volumes and compensating for 
occasional incompleteness of observations. The GMFA 
methodology described here, can be a candidate for this 
role. The advantages of similar systems biology methods 
can be found in integrating multi-level biological sys-
tems information, from genomics to proteomics [21, 29]. 
This provides future opportunities to use the GMFA as a 
framework for clinical systems medicine.

Our present study revealed several limitations. Despite 
the GMFA methodology is able to model medium- and 
large-scale metabolic networks, in the clinical setting 
only small-scale models can be practically applied, since 
a typical biochemical analysis includes only a small num-
ber of common biochemical tests. The available data 
sets included only up to two longitudinal data points per 
patient, often collected at an interval of a few years. Hav-
ing a larger number of longitudinal data points would 
allow us test the linearity of the disease progression 
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extent, one of the key assumptions of the analysis. More-
over, such design would allow us to test the ergodicity 
of the generalized fluxes. If the generalized fluxes are 
indeed ergodic, as predicted from the GMFA equations, 
this methodology could in the future be used to utilize 
large volumes of cross-sectional data as sources of infor-
mation on longitudinal changes in the metabolism of 
patients in homogeneous populations. Despite many of 
diabetes patients receive medications, we were unable to 
effectively use this information, since the variation in the 
treatment regimes was great, while our patient cohorts 
were relatively small. This did not allow us to stratify our 
patients by treatment type into smaller subgroups, while 
having enough patients in each subgroup to achieve sta-
tistically significant conclusions.

Overall, our work demonstrates an example of using 
metabolic and physiological data to construct predictive 
digital twin models of patients from routinely accessible 
clinical data. We provide a novel analytical framework, 
which opens up possibilities for the elucidation of disease 
mechanisms in personalized health assessments. The 
GMFA approach was applied to modeling health states 
in diabetes patients and showed potential to predict the 
development of ophthalmic complications in patients 
with diabetes.

With further development and validation, the GMFA 
approach could be applied in the clinical setting for 
patient risk assessment. In the future, we plan to use our 
methods across a broad range of patient cohorts, pheno-
types and diseases. A potential area of application of this 
methodology is in the stratification of patients in the pro-
cess of population screening.

Conclusion
The Generalized Metabolic Flux Analysis method 
described here aims to apply systems biology analysis 
principles to small- and medium-scale metabolic pro-
files, such as those obtained in clinical settings. The key 
novelty making the approach suitable for future clinical 
practice is building best-fit personalized constraint-based 
computational models (digital twins), which quantify the 
expected rates of inter-connected metabolic processes, 
based on a single time point data input. We validated 
this approach by generating the GMF digital twins from 
the biochemical and physiological data of type 2 diabe-
tes patients. This allowed us to characterize the present 
metabolic states of individuals and to predict the health 
state progression into development of ophthalmic com-
plications. The predictive performance in multiple 
patient cohorts, measured as ROC-AUC was in the range 
0.79–0.95.
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