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Abstract

Lipid membranes play a crucial role in living systems by compartmentalizing biological processes and
forming a barrier between these processes and the environment. Naturally, a large apparatus of biomole-
cules is responsible for construction, maintenance, transport, and degradation of these lipid barriers.
Additional classes of biomolecules are tasked with transport of specific substances or transduction of signals
from the environment across lipid membranes. In this article, we intend to describe a set of techniques that
enable one to build accurate models of lipid systems and their associated proteins, and to simulate their
dynamics over a variety of time and length scales. We discuss the methods and challenges that allow us to
derive structural, mechanistic, and thermodynamic information from these models. We also show how
these models have recently been applied in research to study some of the most complex lipid–protein
systems to date, including bacterial and viral envelopes, neuronal membranes, and mammalian signaling
systems.
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1 Introduction

Lipid membranes are ubiquitously used by nearly all life forms to
separate themselves from their environment, as well as compart-
mentalize different functional areas internally. This compartmen-
talization necessitates on the one hand a mechanism for
construction and maintenance of the lipid barriers, and on the
other hand a means to transport substances and transmit signals
across these membranes to allow for the uptake of nutrients, reac-
tion to changes in environmental conditions, cell–cell communica-
tion, etc. [1, 2]. These functions are usually provided by various
proteins. In the context of lipid homeostasis, the low solubility of
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lipid species in water necessitates an array of transport proteins to
shuttle the lipids from their sites of synthesis to their terminal
locations. In the context of signaling and cross-membrane trans-
port, membrane-associated and membrane-embedded proteins
play a crucial role. These can be roughly divided into peripheral
membrane-associated and transmembrane peptides and proteins.
Major classes of transmembrane proteins are cellular receptors and a
variety of pores and channels. It is estimated that 20–30% of genes
encode membrane proteins in most species [3] and their crucial role
in cellular signaling makes them highly attractive drug targets
[4]. Unfortunately, the study of this interesting class of proteins is
made more challenging by a variety of biophysical phenomena.
Membrane proteins are notoriously hard to crystallize, and hence
it is difficult to obtain reliable structural information in many cases
[5]. Moreover, membrane proteins may not easily adopt their
native fold in the absence of a lipid bilayer environment [6]. Their
exposed hydrophobic surfaces can also interfere with expression
and purification [5].

Accurate modeling of transmembrane and membrane-
associated peptides and proteins can therefore provide an attractive
pathway to the investigation of these important biomolecules.
Computational modeling of proteins in aqueous solution is a
well-established research tool and is used ubiquitously in biophysi-
cal research and drug discovery [7–13]. The special attraction for
computational modeling for protein–lipid interactions lies in the
fact that a suite of highly optimized modeling techniques can be
applied to research problems that are difficult to tackle with con-
ventional experimental techniques. Molecular dynamics (MD)
simulations represent the biological systems in atomistic or near-
atomistic resolution, and apply physics-based interaction potentials
among the interaction sites [7]. In conjunction with application of
appropriate thermostats/barostats for maintenance of the system
ensemble (seeNote 1), the equations of motions can be propagated
forward in time to obtain a realistic trajectory of the particles in the
system. A large amount of effort has gone into the derivation of
appropriate interaction potentials over recent decades, yielding a
variety of different force fields that can be applied to a system of
interest (see Notes 2–4). Most force fields consist of a similar set of
additive functions, which may be separated into bonded and non-
bonded terms. The former broadly consist of harmonic bond and
angle terms, and typically sinusoidal functions for torsion angles.
The latter consist of pairwise potentials for charge–charge interac-
tions, described using Coulomb’s law, and van der Waals interac-
tions, described via the Lennard–Jones potential.

TheMD simulation technique is in principle relatively indepen-
dent of scale; interaction sites may consist either of all atoms (fully
atomistic), heavy atoms grouped together with nonpolar hydro-
gens (united atom description, in which only the polar hydrogens
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are treated explicitly), or of even larger groups of atoms (coarse-
grained description). Extremely coarse-grained (CG) models can
group hundreds of atoms into single interaction sites (e.g., to
investigate the dynamics of large viruses) [14–16]. The key chal-
lenge in generating accurate models is the derivation of model
parameters. Whereas there exists a well-established set of fully
atomistic and united-atom force fields for both proteins (mainly
CHARMM [17, 18], Amber [19, 20], GROMOS [21]) and lipids
(Slipids [22–25], Lipid14 and 17 [26] CHARMM [83],
GROMOS [27, 28]), only a limited number of coarser, larger-
scale force fields readily exist, the most prominent of which is
MARTINI [29–32] which offers parameters for proteins, lipids,
and other biomolecules. However, a multiscale approach can be
used to validate a customized, coarser model to ensure that it
faithfully reproduces the desired observables of a more detailed
approach. Although a CG model will omit details that could be
discerned in atomistic simulations, these models offer access to time
and length scales inaccessible at higher detail [29, 33–35]. More-
over, mapping between different representations is possible, and
mapping procedures are an active area of research
[29, 35–38]. Although GPU acceleration has allowed for a consid-
erable speedup of molecular simulations [20, 39], atomistic resolu-
tion simulations are currently limited to the hundreds of
nanoseconds to microsecond time scale for a typical membrane-
embedded protein system, unless specialized hardware is used
[40, 41]. CG simulation approaches at the scale of the MARTINI
force field, which maps approximately four heavy atoms to one
interaction site, typically allow for simulations of the same systems
over tens to hundreds of microseconds, or more commonly, for
studies of much larger systems, for example, to study aggregation
or oligomerization phenomena [42, 43].

We will now outline the basic prerequisites, key tools and
techniques, and common analysis approaches to the computational
modeling of protein–lipid systems. We will also present an exposé of
the successful application of the presented techniques to biological
research problems.

2 Materials

2.1 Survey

of Structural

Information

In order to construct a computational model of a protein–lipid
system, structural information is crucial. Most known structures
of biomolecules are deposited in the Protein Data Bank [44, 45]
(http://www.rcsb.org/) and are freely accessible for download.
The contents of the PDB predominantly comprise of protein struc-
tures determined by X-ray crystallography, but in recent years, the
quantity of solution NMR structures [46], and cryo-electron
microscopy (EM) structures [47] has been increasing steadily.
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Available structures range from small peptides and single domain
proteins to large-scale multiprotein or heterogeneous complexes
such as the human ribosome or complete virus particles. A good
starting structure for a molecular simulation may contain proteins,
nucleic acids, or ligands of all sorts, but it is necessary that the
structure has a sufficient resolution and that the key areas of interest
are resolved [48, 49]. Resolution is mainly a limiting factor in the
case of cryo-EM structures, but recent technological advances
[47, 50] now allow for structure determination at near-atomistic
resolution. NMR and X-ray structures may have missing dynamic
or disordered regions, as these properties preclude the collection of
high-quality experimental data in these regions. This is of special
concern for membrane proteins [51]. Such missing regions must be
carefully considered during the modeling process (see Note 5). At
this stage, it is also crucial to familiarize oneself with the particular
systems for which the structural measurements were undertaken, as
sometimes the coordinates may have been determined for
truncated subdomains, mutant or hybrid variants, or obtained
under specific pH/solvent conditions that may or may not corre-
spond to the conditions that are to be modeled.

2.2 Choice

of Representation

Following a survey of available structural information, one needs to
determine how the system shall be represented in the model. A
selection of different force fields and resolution scales is readily
available at the atomistic and near-atomistic scales (see Notes
2 and 3). Whereas some force fields try to cover as broad a chemical
space as possible (a property highly valued for modeling specific
ligands), other force fields specialize in a particular classes of system
(e.g., lipids, proteins, or nucleic acids) and are not necessarily easily
combined with others. Moreover, the choice of representation is
also influenced by the research objectives: modeling the specific
interactions of small ligands or individual lipids with a protein may
call for a fully atomistic representation, whereas in studying, for
example, large-scale aggregation behavior, such a choice may be
detrimental, as the resulting loss in accessible time and length scales
outweighs the more accurate description of interactions and hence
a coarser representation would be appropriate.

2.3 Structure

Preparation

Before a specific protein–lipid system can be modeled, several pre-
paratory steps are necessary to ensure that the modeled system
approximates the state of the biological system as close as possible.
Common tasks in this pipeline include: The modeling of missing
loops [52–54] and the reversal or introduction of specific muta-
tions [52, 53] (see Note 5); deciding on the protonation state of
acidic and basic side chains appropriate to the pH conditions that
are to be modeled; inclusion of physiologically appropriate disulfide
bonds; capping of protein chains at the N- and/or C-termini if a
truncated protein is to be modeled; and addition of solvent,
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counterions, and/or structural ions to achieve a biologically realis-
tic system (see Note 6). In addition, modeling a lipid environment
of appropriate composition and phase should be a key aim for
studying any biologically relevant membrane phenomena. The ulti-
mate goal is to obtain a model of the protein–lipid system that
faithfully reproduces as many properties of the biological system as
possible. It is therefore highly recommended that this step is under-
taken with the utmost diligence, and that all desired inputs and
properties are double-checked and verified, as at this point no
significant computational resources have been expended, and later
discovery of mistakes at this stage may invalidate weeks or months
of simulation calculations.

2.4 Membrane

Embedding

One of the key tasks for the simulation of membrane-associated and
membrane-embedded proteins is their placement inside a represen-
tative membrane, for which existing coordinates and topologies are
available (see Note 2). Several tools and methods are available that
assist in the construction of lipid bilayers as well as the embedding
[55–58] of proteins within them (seeNote 4 and Subheading 3 for
further details). A key facet of membrane protein simulations is that
there is a fundamental anisotropy within the system, as the surface
tension of the membrane needs to be modeled independently from
the global pressure scaling of the full system (see Note 1).

2.5 Multiscale

Models

It is often desirable to conduct simulations at a CG level, as the
spatial and temporal scales accessible are usually 1–2 orders of
magnitude increased. However, it is necessary to ensure that the
CG representations are able to accurately reflect the behavior
observed at a higher level of accuracy in the key properties of
interest. Hence, a multiscale approach [36, 38, 59] is often pur-
sued, where high-resolution atomic-scale models are used to derive
and validate coarser models, which can then in turn be used to
sample slow processes in large systems, while having confidence
that the individual model components retain appropriate behavior.
Conversely, parts of CG simulations can be extracted and can be
back-mapped to higher-resolution representations, where after
some refinement these structures are either used as the starting
point for further simulations or are analyzed with respect to specific
interactions.

2.6 The

Simulation Loop

The basic idea behind MD simulations is to start at a specific
structure close to the system equilibrium, assign velocities
corresponding to a specific temperature, and then propagate the
motions of all particles forward for a small time step. At each time
step, the forces that act on each particle are calculated from the
gradients of the pair potentials that constitute the force field. These
forces are then applied to each individual particle, changing their
velocity, which is then again propagated forward in time yielding
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new particle positions. At these new positions the forces are again
evaluated, thus concluding the simulation loop. This simulation
loop is performed for as many steps as desired to obtain a trajectory
for each individual particle at each point in time. The key limiting
factor in this procedure is the magnitude of the time step, which has
to be small enough to prevent even high-velocity particles from
deviating too far outside equilibrium bond lengths, angles, etc.
Such deviation is unphysical and leads to very large reaction forces,
which introduces numerical instability that may cause the simula-
tion to crash. Advanced integration methods, such as a Verlet-type
integrator, offer added numerical stability and energy conservation.
Typical time step durations for atomistic simulations are 1–2 fs,
subject to the use of constraints to stabilize high-frequency
bonds or angles such as those associated with hydrogen atoms,
whereas even moderately CG simulations typically allow time
steps upward of 15 fs. As a consequence, obtaining a 1 μs trajectory
of an atomistic simulation requires the simulation loop to be eval-
uated 0.5–1 billion times, which requires considerable computa-
tional resources. A variety of software packages is available to
perform these calculations, the most broadly used of which are
GROMACS [60–62], NAMD [63, 64], CHARMM [17], and
Amber [19, 20, 65].

2.7 Simulation

Protocol

Following careful system preparation, a simulation run is usually
preceded by an energy minimization protocol. The main purpose of
this minimization is to reduce or eliminate close contacts, overlaps,
or otherwise energetically highly unfavorable situations that would
introduce a steep energy gradient and hence produce large forces in
the initial steps of a simulation. A thorough minimization may be
conducted in several steps, keeping different parts of the system
restrained (e.g., one may initially only allow the solvent to move).
Following minimization, an equilibration procedure is generally
performed. This may take the form of a “thermalization” protocol
to ensure that the system is equilibrated at the temperature of
interest, ideally along with one or more simulations in which initi-
ally strong harmonic restraints are placed on protein and/or lipid
components, allowing for temperature and pressure to stabilize and
the solvent to adjust to the solute. These restraints are gradually
relaxed during equilibration until a stable system is obtained with-
out restraints. A proper equilibration protocol should retain all key
structural characteristics of the investigated proteins. Production
simulations of membrane–protein systems are usually conducted as
unrestrained NPT calculations using semiisotropic pressure scaling
to account for membrane surface tension, at a temperature above
that of the gel-to-liquid phase transition. A low root-mean-square
deviation (RMSD) of the protein backbone with respect to its
initial/experimental coordinates is usually a good metric to judge
stability of a protein during equilibration, while it is advisable to
check for stability of key bilayer properties over time, such as mean
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area per lipid (APL), and density of individual lipid components
with respect to the membrane normal. It is difficult to propose a
specific equilibration protocol for all systems, as the amount and
style of equilibration required will differ from system to system,
depending amongst other things upon the quality of the initial
structure, the number and character of changes introduced during
structure preparation, removal or addition of ligands and ions, and
the insertion protocol within the lipid membrane.

2.8 Basic Analysis All simulations will yield a trajectory, but not all simulation trajec-
tories are meaningful. Hence, a simulation result needs to be care-
fully inspected to ensure that the data produced is robust. Key
facets of successful simulations are that the proteins largely retain
their equilibrium conformation, lipid membranes are stable, cofac-
tors and ligands remain bound, and temperature, pressure, and
energy of the system remain stable. Most of these parameters can
be assessed by plotting simple graphs (RMSD, energy vs. time
plots, etc.), and by visual inspection of the trajectory using a molec-
ular graphics viewer such as VMD [66]. It is not unusual to observe
a certain amount of drift in some or all of these parameters in the
early stages of the simulation, as the components find their equilib-
rium state under the influence of the chosen force field. However,
during further analysis, such periods of drift should be excluded
and the processing should focus on the converged parts of the
trajectory, where system equilibrium states are sampled. If the
system does not reach an equilibrium state, it might be helpful to
extend the duration of the simulation, or to reconsider earlier
choices in how the system model was constructed.

2.9 Computational

Considerations

As previously suggested, the computational demand of molecular
simulations is considerable whenever large systems and/or long
time scales are of interest for a particular research problem. The
computational cost of the MD technique is in large part due to the
calculation of the nonbonded interactions, in particular due to
electrostatics (see Note 7). Whereas simple calculations can be
carried out on a desktop computer, it is usually desirable to have
some sort of high-performance computing (HPC) facility available.
Modern-day simulation packages are designed to make efficient use
of parallel processing, and can utilize a variety of different computer
architectures and coprocessors [61]. In recent years, GPU comput-
ing has contributed to a significant speedup of simulation runs, as
the massively parallel nature of GPUs is well suited to the force
computations characteristic of MD [20, 65]. Most simulation
packages are distributed in source code form and can hence be
compiled and/or modified to take advantage of specific architec-
tures. In addition to general-purpose HPC hardware, some work
has gone into the design of application-specific integrated circuits
(ASIC) dedicated to MD simulations. The Anton machines created
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by DE Shaw Research [40, 41] make use of such ASICs and have
enabled access to millisecond time scales for biologically relevant
systems in full atomic resolution.

3 Methods

3.1 Setting Up

Membrane Protein

and Membrane Peptide

Systems

Once the coordinates for the protein model have been prepared, it
is necessary to embed them in an appropriate lipid environment
prior to solvation (see Note 4). The slow dynamics associated with
the exchange of lipids means that care must be taken to correctly
position a protein within a model membrane or mimetic environ-
ment, to ensure that biologically meaningful results are obtained
from the subsequent production simulation. Several approaches are
outlined below for building biologically or experimentally relevant
systems.

The starting configurations for transmembrane protein simula-
tions are typically created by using one, or a combination of, two
strategies: (a) the lipid membrane is constructed around the pro-
tein; or (b) the protein is inserted directly into a preexisting, equili-
brated lipid membrane (see Note 2). Both require some relaxation
of the system before production data can be collected. The first of
these strategies is utilized by the popular CHARMM‑GUI online
server [56] and “insane” script for CG simulations [58]. In certain
circumstances, however, the second of these strategies is preferred,
particularly if the insertion process minimally perturbs the mem-
brane environment and thereby reduces the time required for the
system to relax.

3.1.1 Inserting a Protein

Within a Lipid Bilayer

Environment

1. The coordinates of some preequilibrated lipid bilayer mixtures
are available freely online (see Note 2), but in cases where a
complex mixture is required the bilayer will need be con-
structed. This may be carried out via a number of available
online tools (see Note 4), or may be performed “in house”
using techniques similar to those that construct the lipid bilayer
with the protein in situ. The speed of construction of an
isolated lipid membrane can be increased by first forming a
small, equilibrated bilayer “patch” containing ~16 or so lipids
in each leaflet. The initial configuration of the lipids in the
patch is biased so that they closely resemble a lipid bilayer: by
placing the individual lipids on grid points or by algorithmically
packing them into a bilayer configuration (see also Subheading
3.3). The assembled bilayer patch is then relaxed for approxi-
mately 100–1000 ns, or until an observable property such as
the APL has plateaued. After the lipid bilayer has stabilized, the
final frame is taken and the patch is replicated in the x and
y dimensions (assuming z to be the normal to the bilayer) until
the membrane is large enough in size to accommodate the
transmembrane protein of interest.
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2. The correct initial position of the protein relative to the plane
of the bilayer can be estimated by eye, using the position of the
amphipathic aromatic “girdles” that anchor themselves in the
lipid–head group interface [67]. Alternatively, empirical
approaches can be used to facilitate positioning, such as the
Orientations of Proteins in Membranes (OPM) database [68]
and associated server (http://opm.phar.umich.edu/server.
php) which predicts the protein location based on the transfer
energy of accessible amino acids between water and the
membrane core.

3. A straightforward approach for membrane embedding termed
g_membed developed by Wolf et al. [55], related to another
method described by Yesylevskyy [69], involves growing an
initially “contracted” protein back to its correct size in the
membrane plane while pushing lipids away during a short
MD simulation, minimally disrupting the lipid bilayer. Simi-
larly, the method of Faraldo-Gomez et al. [70], uses an implicit
protein grid-based force field for specificity at the protein–lipid
interface and applies weak repulsive forces to nearby lipid
molecules perpendicular to the solvent-accessible protein sur-
face during multiple short MD simulations, resulting in a vol-
ume adapted to the protein surface with only minimal
perturbation of the existing bilayer structure.

4. Another approach, based on the LAMBADA and inflateGRO2
[71] tools, works sequentially to perform the positioning and
insertion of the protein. LAMBADA decides the appropriate
orientation for insertion by calculating a hydrophilicity score
along the protein’s axis as it is tilted at angles relative to the
bilayer plane. Once positioned, inflateGRO2 differentiates
lipids based on their overlap with the protein, removing those
with high overlap and relaxing the lipids that exist in the inner
most annular layers surrounding the protein.

5. Alternatively, one of the simplest strategies to insert a trans-
membrane peptide or protein in an equilibrated lipid bilayer is
to carefully superimpose the coordinates of both and then to
remove any protein-overlapping lipid molecules. This insertion
method can result in excessively large holes in the bilayer with
the lipids suboptimally packed around the protein, especially
for nonuniform proteins with irregular surface shapes. How-
ever, with increasing computational power and faster algo-
rithms, it is now often possible to simply use an extended
“equilibration period” to fix these issues. In this approach,
positional restraints are applied to the protein coordinates to
prevent structural drift during an MD simulation, during
which local lipid and solvent molecules can relax freely around
the protein surface. Subsequently, protein restraints may be
gradually released, prior to production MD.
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6. The above methodologies may fail in the case of proteins whose
surfaces are particularly irregular or asymmetric, potentially
leading to large gaps within the lipid bilayer that are not easily
equilibrated. A possible solution to this problem is to use
alchemical transformation to “grow” the peptide within the
membrane phase. Alchemical methods have traditionally been
used to calculate the free energy (ΔG) between two thermody-
namic states [72]; in practice, this takes the form of a series of
transformations between nonphysical intermediates defined as
a function of the coupling parameter λ. Such an approach has
proven useful for peptides that exist parallel to the membrane
surface, but buried within the bilayer. For example, immunor-
eceptor tyrosine-based activation motifs (ITAMs) containing
conserved YxxL/I sequences have been proposed to be embed-
ded in this manner. Phosphorylation of ITAM tyrosines present
in the cytoplasmic tails of T-cell receptor (TCR) associated
chains serve to propagate antigen-induced activation, and it
has been proposed that this may be regulated by the extent of
peptide sequestration within the lipid bilayer [73]. To investi-
gate this further, the CD3ε ITAM peptide [73] was alchemi-
cally “grown” at different positions within a membrane model.
This was achieved via a series of short MD simulations, with the
protein coordinates weakly restrained, starting from λ ¼ 0
(peptide absent) and increasing in successive λ ¼ 0.05 incre-
ments until λ ¼ 1 (peptide fully inserted). To avoid sudden
atomic overlaps due to nascent peptide-lipid interactions,
which may cause simulation instabilities, best results were
achieved by: (a) independently “switching on” the Lennard–-
Jones interactions first, followed next by introducing the point
charges of the peptide atoms; and (b) using a soft-core poten-
tial to avoid endpoint errors [74]. Jefferys et al. coined the term
“alchembed” for a variant of this strategy, and have made
available a tutorial for the GROMACS simulation package
[75]. The ITAM simulations suggested that burial of the pep-
tide within the bilayer hydrophobic core would likely lead to
significant lipid deformation and membrane instability (Fig. 1).
Instead, in the resting state, the ITAM peptide likely sits at the
membrane interface, where the tyrosine residues can still inter-
act with lipids.

7. Finally, a “brute force” simulation strategy entails placing a
protein in a random mixture of lipid and solvent, prior to an
extended simulation, leading to spontaneous self-assembly into
a membrane-inserted state, thereby avoiding the need for user
intervention [76]. With appropriate lipid–solvent ratios,
micelles or other nonlamellar phases may also be achieved.
Unfortunately, the compute times for performing such simula-
tions in full-atomic resolution are costly, and this method can
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be somewhat unpredictable in terms of the final system config-
uration that is obtained. Fortunately, CG approaches can help
to solve this problem [77], yielding significant speed-up and
enabling rapid testing of multiple starting conditions, such as
system component concentrations and lipid composition. Such
a strategy can be useful for complex, multicomponent systems;
for example, it has been applied to understand why some
thrombin-derived C-terminal peptides in wound fluids form
antibacterial amyloid-like particles [43], while others exert
antiseptic activity by binding to endotoxin aggregates or
immune receptors [78]. Furthermore, once a desired CG pro-
tein–lipid assembly has been generated, it is possible to “back-
map” or “reverse transform” the coordinates to all-atom repre-
sentation for detailed refinement. This may be achieved via
alignment against libraries of molecular fragments combined
with homology modeling approaches [79], or using a tool
based on geometric projection and subsequent cycles of relaxa-
tion based on energy minimization and position-restrained
MD [80], which enables straightforward conversion of MAR-
TINI systems to their atomic counterparts for a variety of
common force fields. Such a strategy can, for example, prove
useful in predicting both the global conformation and detailed
atomic interactions of membrane protein oligomers in a lipid
bilayer environment [81].

3.1.2 Setting Up

Peripheral Membrane

Protein Systems

Peripheral membrane-bound proteins adhere temporarily to the
surface of the lipid bilayer, and are important in a wide variety of
cellular functions, including, for example, regulatory roles in chan-
nels and receptors, enzyme targeting, and signaling in

Fig. 1 Alchemical insertion of ITAM peptide into a lipid bilayer within the hydrophobic core (top row) or at the
membrane interface (bottom row). Representative snapshots are shown at three different values of coupling
parameter λ, indicated inset. Lipid head groups are indicated in CPK wireframe format; the ITAM peptide is
shown in green ribbons format, with basic side chains (blue) and tyrosines (red) represented in licorice format.
Lipid tails and water molecules are omitted for clarity
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protein–protein complexes. Stable binding of such proteins often
involves electrostatic interactions, which act over long distances
between charged amino acids and lipids. While approximate meth-
ods are available to predict association of peripheral proteins with
membranes, these tend to lack details of specific interactions which
may be biologically important. Thus, a new method named Rota-
tional Interaction Energy Profiling (RIEP) has recently been devel-
oped to rapidly evaluate the electrostatically optimal orientation of
a protein with a lipid bilayer of specific composition, yielding con-
figurations for subsequent seeding of MD simulations [82]:

1. The aim is to rapidly evaluate and identify optimal protein
orientation(s) with respect to the membrane on the basis of
electrostatics. The procedure allows the characterization of
membrane–protein association, the identification of important
residues, and initiation of MD simulation of the binding pro-
cess from predetermined ideal orientation(s).

2. The requirements for this method are: (a) Python wrapper
script for calling GROMACS [61] tools, available from
https://github.com/allison-group/riep. This can run across
multiple nodes of a compute cluster. (b) GROMACS software,
version 3 onward. (c) Separate coordinate, topology, and index
files for the equilibrated protein and membrane components.

3. The procedure, as outlined in Fig. 2, is as follows:

(a) Rotate protein coordinates around pitch, roll, and yaw in
user-determined degree increments (rotation increments
of 30� are recommended).

(b) Place the rotated protein at a user-determined minimum
distance from the membrane. A minimum protein–mem-
brane distance of 5 Å is recommended. Note that this
distance may change during energy minimization, typi-
cally becoming closer for favorable orientations.

(c) Combine the rotated protein coordinates with the non-
rotated membrane coordinates, and subsequently solvate
and energy minimize the system.

(d) Initiate a short MD simulation of the protein–membrane
system for a user-determined number of steps. Fewer than
25 integration steps are recommended; the goal of this
and the energy minimization is to relax the system at
minimal computational expense.

(e) Calculate protein–membrane Coulombic and Lennard–-
Jones potential energies for each set of protein–membrane
coordinates. Optimal orientations of the protein for mem-
brane association are those with the lowest energy. Many
extrinsic membrane proteins associate with the membrane
via attractive electrostatic interactions; thus, the
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Coulombic potential energy is typically of higher magni-
tude and most informative.

(f) Visualize the optimal coordinates, for example, with
VMD [66].

(g) Finally, to calculate per-residue decomposition of pro-
tein–membrane energy for a given orientation, residues
are selected within the Coulombic cutoff distance of the
membrane, and the short MD simulation rerun, using the
identified residues of interest as energy groups.

3.2 Preparation

of Complex Membrane

Protein Systems

3.2.1 Lamellar

and Nonlamellar Starting

Structures

with CHARMM-GUI

It is often desirable to investigate the properties of a specific com-
bination of lipids organized in a nonplanar configuration. When a
CG self-assembly-based strategy (see Subheading 3.1.1) is insuffi-
cient, the CHARMM-GUI server (http://www.charmm-gui.org)
may be used to create such systems [56]. Recently, the membrane
builder has expanded its repertoire of lipids to include over 180 dif-
ferent variants [83], and it additionally supports the use of CG
lipids from the MARTINI force field. The chosen lipids can be
assembled into the lamellar and nonlamellar lipid structures of
vesicles, micelles, and hexagonal phase membranes [57, 84].

Fig. 2 An efficient protocol for setting up optimal peripheral membrane protein systems. Note that each of the
labeled steps correspond to those in the text
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3.2.2 A Protocol

for Simulating Enveloped

Virus Particles

Beyond the challenge of predicting the orientation of membrane
peptides and proteins within a lipid membrane, MD simulations
can also be used in refining large multicomponent protein–lipid
complexes, such as enveloped viruses, in which a lipid vesicle
derived from the cell is “coated” by embedded viral proteins
[14]. This was recently demonstrated for the entire dengue virus
envelope particle, with a diameter of ~50 nm, based on a combina-
tion of data from atomic-resolution and CG MARTINI-based
simulations along with cryo-EM [42]. The steps required to
achieve this are outlined below, and illustrated schematically in
Fig. 3.

1. Initially, atomic-resolution simulations should be performed
for isolated viral envelope protein subunits and/or small assem-
blies thereof, either for the ectodomains in solution, or for the
full-length constructs containing transmembrane regions
embedded within a small lipid bilayer patch. This provides a
measure of the dynamics and stable structural properties of the
proteins, enabling subsequent calibration of the CG model. A
straightforward way to map such dynamics between resolutions
is to utilize an elastic network within the CGMARTINI model
[29], and to iteratively tune the associated parameters (i.e.,
cutoff distances and harmonic potential force constants) until
comparable protein flexibility is achieved at both resolutions.

2. At the same time, regions such as flexible loops or transmem-
brane helices missing from the cryo-EM structure should be
reconstructed (see Subheading 2). Subsequently, mapping of
the entire viral atomic protein coordinates into MARTINI
representation should be conducted, along with an energy
minimization protocol to ensure the absence of steric clashes
(Fig. 3b).

3. A CG viral vesicle may now be built, for example, using the
CHARMM-GUI Martini Maker [57], in accordance with the
diameter estimated from cryo-EM maps or other experimental
measurements, and with a lipid composition guided by avail-
able lipidomics data. Due to the tightly packed mesh of pro-
teins typical of (pseudo)icosahedral viral envelopes, a simple
process of overlay of protein coordinates and deletion of over-
lapping lipids is typically insufficient, since most lipid molecules
in the vesicle will at least partially coincide with the protein. To
overcome this, a procedure involving shrinking of lipids along
their principal axes, deletion of remaining overlapping lipids,
followed by multiple iterative rounds of energy minimization
and protein position-restrained equilibration (Fig. 3a) should
result in a reasonable model of the viral protein embedded
vesicle [42].
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4. The CG enveloped viral protein–lipid complex should next be
solvated within a simulation box (typically a dodecahedron or
truncated octahedron is useful in minimizing excessive solva-
tion of the spherical virus particle) and progressively equili-
brated. Initially, sets of ~10,000–100,000 step protein
backbone-restrained equilibration simulations in the NVT
ensemble should be run with a short integration time step,
incrementally increasing this by ~2–4 fs for each successive
simulation. Subsequently, once the maximum integration

Fig. 3 Protocol for multiscale modeling and refinement of viral envelope against cryo-EM data. (a) Schematic
for stepwise method to embed viral proteins within a lipid vesicle. (b) Multiscale illustration of dengue virus
envelope. The simulation construct is shown for the entire viral envelope complex in surface representation on
the right. A “zoomed” snapshot on the left shows the dimeric envelope proteins in both atomistic and CG
representations (left). Protein is colored according to radial distance from the center of the virus, and lipids are
colored green. (c) Alignment of density maps determined by cryo-EM (red) and refined during simulation (blue)
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time step has been reached, longer equilibration runs (e.g.,
~10–100 ns) should be run in the NPT ensemble, during
which the position restraints on protein coordinates are gradu-
ally reduced. This may finally be followed by an unrestrained
NPT production run.

5. MDanalysis [85] is an object-oriented Python library which
enables analysis of trajectories derived frommanyMD packages
(https://www.mdanalysis.org), and includes tools to generate
theoretical density maps from the underlying simulation
frames. This may be used to generate a simulation-averaged
density map, using a grid spacing in accordance with the reso-
lution of the experimental cryo-EM map (Fig. 3c). The Chi-
mera [86] software package (https://www.cgl.ucsf.edu/
chimera/) enables alignment of the experimental and theoreti-
cal maps, by minimizing the mean cosine angle between vectors
obtained via trilinear interpolation; this also yields a correla-
tion, providing a measure of agreement between simulation
and experiment.

6. Finally, refined viral envelope coordinates may be back-mapped
and simulated at atomic resolution (see Subheading 3.1.1),
depending on availability of computational resources, enabling
fine-grained analysis of lipid–protein interactions (Fig. 3b).

3.3 Setting Up

Biologically Realistic

Membrane Systems

Building good starting structures for lipid bilayer simulations can
be quite involved due to the interwoven nature and long relaxation
timescales of lipids. The complexity increases further with bilayer
size and number of lipids types due to slow equilibrium of lipid
mixing, lipid flip-flop, and bilayer undulation dynamics. Improved
bilayer building tools (see Note 4), use of coarser, more forgiving
force fields, and faster computation have made bilayer construction
easier, but interest in larger membranes (up to ~500 � 500 nm),
complex bilayer geometries (various capsids and organelles), and
more complex lipid mixtures (>60 different lipid types) have com-
plicated matters—see for example [87–90]. As simulation complex-
ity begins to approach that of a physiologically relevant membrane
composition, one must begin to consider membrane asymmetry
and the associated technical difficulties related to its setup and
simulation. The primary concern when generating starting config-
urations for asymmetric membranes is that the average APL varies
based on the lipid type and the particular lipid mixture the lipid is
in; therefore, for a periotic system, the number of lipids in each
membrane leaflet should likely differ. If the aggregated area occu-
pancy in the two leaflets is not the same, then an artificial membrane
“frustration” will arise that affects the lateral pressure profile, mem-
brane curvature, and leaflet surface tension.

Adjusting the number of lipids in each leaflet based on their
projected APL reduces some of the artifacts but does not fully
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resolve the asymmetry. APLs cannot simply be reverse-engineered
from measured APLs, as these (a) are usually identified at a specific
temperature that may not be appropriate for the simulation in
question, (b) are dependent on the local lipid environment,
and/or (c) may not even exist for a specific lipid in isolation.
Another approach is to artificially induce lipid flip-flop, allowing
lipids to equilibrate between the leaflet; this will relieve any area
asymmetry, but will also alter the lipid mixtures of the two leaflets.
Here, a third method is described based on separate APL measure-
ments for the two leaflets (Fig. 4), which has been used in, for
example, [87, 89]:

1. The outer/inner leaflet lipid mixtures are used to instigate two
individual simulations; one with the outer leaflet composition
as a symmetrical membrane, and another with the inner leaflet
composition as a symmetrical membrane. These simulations are
run concurrently, and the global lateral areas (in terms of box
size) of these membranes are monitored until they reach an

Fig. 4 Setup of an asymmetric neuronal plasma membrane. (a) Two simulations
of the symmetric outer and inner leaflet mixtures are run to estimate the APL.
After setup with the insane tool the asymmetrical mixture is simulated and lipid
flip-flop is monitored. If flip-flop is “fast” and asymmetric the setup needs to be
iterated with an adjusted lipid mixture. (b) Snapshot of the asymmetric neuronal
plasma membrane simulation described in [89] is shown from the top, showing
the outer leaflet, and the bottom, showing the inner leaflet. Pie charts with the
overall distribution of lipids head group types in the outer/inner leaflet are also
shown
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equilibrium value. Note that this can take several microseconds
for complex membranes. These simulations produce the equi-
librated average area for both the inner and outer leaflets. The
ratio between these values provides a scaling function to calcu-
late the number of lipids required for each leaflet. This data can
be utilized by tools such as insane [58], which provides an
“offset” flag to indicate the asymmetry of lipid numbers
between the leaflets.

2. Bilayers undulate and their tendency to undulate is lipid mix-
ture dependent. Therefore, to get a better estimate of the
average APL of the two different mixtures, either the bilayer
surface should be fitted, or the bilayers should be restrained to
be similarly flat. This can be done by applying a weak position
restraint potential on the head group particles of a major con-
stituent of one of the leaflets. This restraint potential is applied
only in the direction of the normal of the bilayer, and only on a
single leaflet so as not to affect the bilayer thickness.

3. Having determined the appropriate number of lipids present in
each leaflet, one must also then consider the effects of mem-
brane components that have the ability to flip-flop (such as
cholesterol) within the timeframe of the simulation. This is
especially important for CG simulations that easily reach time-
scales in which cholesterol can equilibrate between the two
leaflets. Deviation of this cholesterol distribution from its orig-
inal leaflet fractions causes buildup of cholesterol in one of the
leaflets and will again lead to artificial membrane “frustration.”

4. In order to adjust for cholesterol flip-flop (and other fast flip-
flopping lipids), the original, asymmetric lipid system (with
corrected leaflet-dependent densities) is simulated until the
cholesterol distribution has equilibrated. Again, this may take
many microseconds of simulation. If cholesterol displays signif-
icant deviation from the starting configuration then these new
cholesterol inner/outer leaflet fractions are incorporated back
into the original leaflet compositions (and any minor adjust-
ments made accordingly). These updated leaflet compositions
with adjusted cholesterol content again need to have their
APL/densities calculated via simulation of a pair of symmetric
bilayers (repeating step 1). The revised asymmetric bilayer
(adjusted for cholesterol equilibration and leaflet offset) is
simulated again (repeating steps 2 and 3) to monitor for any
further drift in the between leaflet lipid distributions. This
process is iteratively repeated until the cholesterol leaflet dis-
tributions do not drift from their starting values during
simulation.

It should be noted that this method is not without its faults. By
definition, any bilayer that has an asymmetric leaflet lipid
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composition is not at equilibrium, therefore, what constitutes as
fast lipid flip-flop will depend on the application in question. Fur-
thermore, there is the assumption that the APL of the lipids in a
restrained, flat membrane is representative of how the lipid would
behave in a freely undulating bilayer.

3.4 Beyond

Membranes: Bacterial

Envelopes and Cell

Walls

The cell wall is an often-forgotten component of the bacterial cell
envelope. Sandwiched between the inner and outer membranes in
an aqueous compartment called periplasm, the cell wall is made of a
network of peptide and sugar molecules commonly known as pep-
tidoglycan [91, 92]. The peptidoglycan mesh is linked covalently to
the outer membrane via Braun’s lipoproteins [93] and noncova-
lently to both membranes via integral membrane proteins like
OmpA and TolR [94–96]. Earlier simulation studies of the cell
wall by Gumbart et al. focused on elucidating its physical properties
such as elasticity, pore size, and thickness [97]. However, molecular
details of how the cell wall is positioned and interact with other
numerous components of the cell envelope remained sparse. We
therefore developed atomistic parameters for simulation of pepti-
doglycan network (Fig. 5) in the presence of Braun’s lipoprotein
and OmpA [98, 99].

The Braun’s lipoprotein is anchored to the outer membrane via
a lipidated N-terminus and binds the peptide chain of the cell wall
on its C-terminus. The length of the Braun’s lipoprotein, therefore,
has a direct influence on the distance between the cell wall layer and
the outer membrane [100]. Our simulations, however, showed that
this is not quite as simple as often suggested. The Braun’s lipopro-
tein was able to tilt and bend significantly with respect to the outer
membrane, effectively shifting the cell wall closer to the latter,
during simulations. This smaller gap in turn facilitated the initial
binding of OmpA periplasmic C-terminal domain to the cell wall.

Fig. 5 Model of the gram-negative bacterial E. coli inner membrane and peptidoglycan layer. In the inner
membrane model below, phospholipid head group phosphorus atoms are shown in cyan. Above, the molecular
surface of the peptidoglycan model is shown, with the inset depicting that the strands are 50% cross-linked
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In fact, in the absence of Braun’s lipoprotein the C-terminal
domain of OmpA monomer showed a high propensity to bind to
the inner leaflet of the outer membrane instead of the cell wall,
further corroborating the instrumental role of Braun’s lipoprotein.
Dimerization of OmpA, interestingly, eliminated this dependency
as the C-terminal domain bound to the cell wall even without
Braun’s lipoprotein, perhaps due to the stronger electrostatic inter-
action formed in the OmpA dimer. While the functional relevance
of OmpA dimerization is still unknown, in vivo cross-linking stud-
ies and mass spectrometry showed that the dimeric interface is
largely localized in the C-terminal domain [101, 102], suggesting
a likely role in improving cell wall binding. Our simulations also
indicated that, once bound, the linker connecting the membrane
embedded N-terminal beta barrel domain and the peptidoglycan
bound C-terminal domain of OmpA to be highly adaptable, which
is potentially important to provide a flexible mechanical support for
the underlying cell wall network. In essence, these simulations have
uncovered important molecular details of the dynamic interplay
between the cell wall and some of the components of the gram-
negative bacterial cell envelope.

3.5 Thermodynamics

of Lipid–Protein

Complex Interactions

Free energy calculations allow the assessment of thermodynamics of
a given biological process. A convenient approach for binding and
transfer processes is the calculation of a potential of mean force
(PMF) [103]. The PMF may be obtained by defining a reaction
coordinate (e.g., the distance between two binding partners), and
then sampling the forces acting on the respective solutes when
restrained at a specific distance. Using the weighted histogram
analysis method (WHAM) allows to reconstruct the PMF from
these forces [104]. In the case of no interaction, the average force
should be zero, whereas attractive interactions are indicated by
forces pulling the particles to one another. Sampling the PMF
along the entire reaction coordinate allows one to obtain the free
energy difference between the bound minimum energy and the
unbound energy at larger solute distances, which is equivalent to
the difference in free energy between these states. The technique of
using discrete restrained sampling points to obtain the PMF is
called umbrella sampling [105], which is implemented in most
major simulation codes.

Using this approach, we recently demonstrated how an exten-
sive series of free energy calculations in combination with multiscale
models allow us to trace the thermodynamics of transfer of a ligand
between multiple protein partners and membranes along a
“biological relay” [106] (Fig. 6). The relay in question is the
Toll-like receptor 4 (TLR4) system [107, 108]; TLR4 is part of
the mammalian innate immune pathway which is associated with
the plasma membrane and signals the presence of pathogen inva-
sion by detecting lipopolysaccharide (LPS), the dominant
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component of the outer leaflet of gram-negative bacterial outer
membranes [109]. Due to its high hydrophobicity, the energy
required to extract LPS from bacterial membranes is likely to be
considerable. Thus, a cascade transport system exists, including the
essential membrane-associated GPI-anchored CD14 receptor
[110–113]. We applied PMF calculations to derive energetic infor-
mation for the stepwise processes, from the extraction of LPS from
biologically realistic bacterial membrane models, LPS binding to
CD14 and to the lipid-binding coreceptor of TLR4, MD-2
[114, 115], and finally LPS/MD-2 transfer to the terminal TLR4
receptor. This technique enabled us to demonstrate that LPS fol-
lows a thermodynamic funnel, leading to a favorable net change in

Fig. 6 Thermodynamics of LPS transfer from the bacterial membrane to the
terminal TLR4/MD-2 receptor complex. In gram-negative bacteria, the outer
leaflet of the outer membrane of is largely constituted of LPS, while the inner
leaflet contains a mixture of phospholipid species, and the membrane is also
interspersed with a variety of outer membrane proteins such as the modeled
OmpF porin. Extracting LPS from this membrane requires considerable energetic
effort. LPS is subsequently handed from protein to protein in a cascade,
following a path of increasing affinity until ultimately bound in the TLR4/MD-
2 complex. The energetic cost estimated from PMF calculations of each step-
wise transfer process in this cascade is indicated inset. Dimerization of the
terminal receptor activates downstream signaling, thus enabling an innate
immune response
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free energy upon traversing the complete pathway. Moreover,
subsequent CG simulations enabled us to observe the formation
of a hydrophobic bridge as part of a transient complex between
CD14, MD-2, and TLR4 during LPS transfer [106], thus circum-
venting the energetic penalty of exposing the highly hydrophobic
acyl tails to aqueous solvent.

4 Notes

1. Usually, biological systems should be modeled in the isother-
mal–isobaric ensemble, with maintenance of a constant num-
ber of particles, pressure, and temperature (NPT), as this
reflects experimental and in vivo conditions. Whereas globular
proteins can be modeled with isotropic pressure scaling, this is
generally not appropriate for membrane systems. A semiisotro-
pic pressure coupling that uses distinct barostats for the mem-
brane plane and the normal direction may be employed to
allow for independent changes in lipid area. Alternatively, simu-
lations can be conducted in the canonical ensemble (NVT) at
preset box dimensions or with a constant area in the membrane
plane to constrain the system to a preset area per lipid, or
alternatively, with an additional surface tension term.

2. Topologies with example coordinates for specific lipids and/or
lipid bilayers can now be obtained from many websites, as
exemplified by the following nonexhaustive list: http://wcm.
ucalgary.ca/tieleman/downloads (Tieleman group); https://
lipidbook.bioch.ox.ac.uk (Sansom group); http://ter
pconnect.umd.edu/~jbklauda/research/download.html
(Klauda group); http://www.softsimu.net/downloads.shtml
(Karttunen group); http://www.dsimb.inserm.fr/~luca/
downloads/ (Monticelli group); http://www.charmm-gui.
org/?doc¼archive&lib¼lipid_pure (CHARMM-GUI site);
http://mackerell.umaryland.edu/charmm_ff.shtml (MacKer-
ell group); https://biophys.uni-saarland.de/downloads.html
(Hub group); http://cgmartini.nl/index.php/force-field-
parameters/ (Marrink group); and https://atb.uq.edu.au/
index.py?tab¼existing_molecules (ATB and Repository).

3. Parameters for nonstandard (i.e., nonprotein, nonlipid,
non-nucleic acid) molecules, such as for drug-like molecules,
need separate topology files describing their connectivity,
bond, angle, and dihedral parameters and charges. These can
be constructed by combining preexisting topologies of smaller
fragments, generated manually, or generated in an automated
fashion using one of several web servers or local tools such as
“antechamber” [116]. Popular servers include: ParamChem
(www.paramchem.org); SwissParam (http://www.swissparam.
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ch), the GlycoBioChem PRODRG2 Server (http://davapc1.
bioch.dundee.ac.uk/cgi-bin/prodrg); the Automated Topol-
ogy Builder (ATB) and Repository (https://atb.uq.edu.au);
and the CHARMM General Force Field (CGenFF) program
(https://cgenff.paramchem.org). Parameters obtained from an
automated tool always need to be carefully examined to ensure
that connectivity, atom types, and bond orders have been
properly applied, and where possible, tested for reproduction
of accurate experimentally validated properties during
simulations.

4. Common tools for membrane building include: cellPACK—A
specialized version of the autoPACK tool for large-scale pack-
ing of biological macromolecules into arbitrary geometries,
also supports packing of lipids [117] (autopack.org);
CmME—CELLmicrocosmos Membrane Editor is a Java-
based tool to generate heterogeneous membranes based on
lipid shape [118] (www.cellmicrocosmos.org); CHARMM-
GUI—A versatile web-based Graphical User Interface that
supports building both atomistic (CHARMM) and CG (Mar-
tini) bilayers from a large list of supported lipid types [57, 83,
119] (www.charmm-gui.org); insane—“INSert membrANE”
is a flexible python-based command-line tool for building Mar-
tini bilayers and inserting proteins in bilayers; it supports
numerous lipids and uses extendable lipid templates that
allow for easy additions of new lipid types [58] (cgmartini.nl/
index.php/insane); LipidBuilder—A webserver that can build
bilayers of CHARMM lipids created from a library of head
group and hydrocarbon tails building blocks [120]
(lipidbuilder.epfl.ch); LipidWrapper—A tool to curve bilayers
into an arbitrary shape [121] (nbcr.ucsd.edu/lipidwrapper);
MemBuilder—A webserver to build heterogeneous atomistic
lipid bilayers [122] (www.membuilder.org); MemGen—A
force field in dependent webserver for setting up heterogenous
bilayers based on uploaded lipid structures [123] (memgen.
uni-goettingen.de); PACKMOL—A program to generate ini-
tial coordinates for molecular dynamics simulations, including
bilayers [124] (m3g.iqm.unicamp.br/packmol); VMD—The
Visual Molecular Dynamics, molecular modeling and visualiza-
tion, program has a membrane plugin that can replicate and
trim preequilibrated bilayer patches to the desired size [66]
(www.ks.uiuc.edu/Research/vmd).

5. It may be necessary to “repair” parts of an experimentally
solved structure, for example, in the case of dynamic and
hence unresolved loops. For small modifications such as miss-
ing amino acid side chain atoms, the simulation package itself
will likely be sufficient. For more complicated problems,
homology modeling approaches may be necessary. Homology
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modeling enables the derivation of unknown “target” protein
structures from homologous “template” proteins of known
structure. This is based on the observation that structures
tend to be more conserved than sequences. Useful structural
homologues typically have sequence identities of at least ~30%
to generate models with confidence. Known structural ele-
ments (domains, TM helices, etc.) can be incorporated as con-
straints, which improves reliability. Conserved features, such as
inverted topological repeats, may be used to model alternative
conformational states of membrane proteins [125]. Homology
modeling is usually performed by advanced stand-alone pro-
grams such as Modeller [53]. Additionally, online servers may
be used for homology modeling (e.g., SWISS-PROT (http://
swissmodel.expasy.org)) and/or for ab initio protein structure
prediction (e.g., Rosetta (https://www.rosettacommons.org/
software/servers), I-TASSER (https://zhanglab.ccmb.med.
umich.edu/I-TASSER/)).

6. Solvation of simulation systems is usually performed by super-
imposing preequilibrated solvent boxes with other system
components and deleting overlapping water molecules. Addi-
tionally, water may be manually removed from the inner hydro-
phobic core of lipid bilayer models, or a restrained equilibration
could be performed to ensure any water molecules spontane-
ously exit the membrane. Usually, a physiological salt concen-
tration of 0.1–0.15 M NaCl is established by replacing water
molecules with the respective ions, either via random replace-
ment or based on the electrostatic potential of the system.
These steps have generally been at least semi-automated in
most modern simulation software packages.

7. In contrast to bonded and van der Waals interactions, electro-
static interactions do not become negligible with distance.
While the Coulomb potential decays with 1/r, the number of
interaction partners increases with r3, and hence applying a
cutoff for electrostatic interactions is not appropriate. Two
approaches are generally used to deal with this effect: at dis-
tances larger than a specific cutoff (usually ~1.5 nm), electro-
statics are modeled by a response from a uniform background
dielectric, a so-called reaction field. Alternatively, in periodic
boundary conditions, Ewald summation may be used to calcu-
late exact electrostatic interactions, usually in the form of
FFT-based Particle Mesh Ewald (PME) [126]. This can how-
ever introduce periodicity artifacts into the system [127]. In
the absence of additional information, the choice of treatment
or electrostatics should be guided by the current standards of
the force field.
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et al (2015) Computational lipidomics with
insane: a versatile tool for generating custom
membranes for molecular simulations. J
Chem Theory Comput 11:2144–2155

59. Chang R, Ayton GS, Voth GA (2005) Multi-
scale coupling of mesoscopic- and atomistic-
level lipid bilayer simulations. J Chem Phys
122:244716

60. Abraham MJ, Murtola T, Schulz R et al
(2015) GROMACS: high performance
molecular simulations through multi-level
parallelism from laptops to supercomputers.
SoftwareX 1–2:19–25

61. Berendsen HJC, van der Spoel D, van Drunen
R (1995) GROMACS: a message-passing par-
allel molecular dynamics implementation.
Comput Phys Commun 91:43–56

62. Van Der Spoel D, Lindahl E, Hess B et al
(2005) GROMACS: fast, flexible, and free. J
Comput Chem 26:1701–1718

63. Phillips JC, Braun R, Wang W et al (2005)
Scalable molecular dynamics with NAMD. J
Comput Chem 26:1781–1802

64. Sanbonmatsu KY, Tung CS (2007) High per-
formance computing in biology: multimillion
atom simulations of nanoscale systems. J
Struct Biol 157:470–480
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