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A B S T R A C T

The innate immune system provides a first line of defense against foreign microorganisms, and is typified by the
Toll-like receptor (TLR) family. TLR4 is of particular interest, since over-stimulation of its pathway by excess
lipopolysaccharide (LPS) molecules from the outer membranes of Gram-negative bacteria can result in sepsis,
which causes millions of deaths each year. In this review, we outline our use of molecular simulation approaches
to gain a better understanding of the determinants of LPS recognition, towards the search for novel im-
munotherapeutics. We first describe how atomic-resolution simulations have enabled us to elucidate the reg-
ulatory conformational changes in TLR4 associated with different LPS analogues, and hence a means to ratio-
nalize experimental structure-activity data. Furthermore, multiscale modelling strategies have provided a
detailed description of the thermodynamics and intermediate structures associated with the entire TLR4 relay –
which consists of a number of transient receptor/coreceptor complexes – allowing us trace the pathway of LPS
transfer from bacterial membranes to the terminal receptor complex at the plasma membrane surface. Finally,
we describe our efforts to leverage these computational models, in order to elucidate previously undisclosed
anti-inflammatory mechanisms of endogenous host-defense peptides found in wounds. Collectively, this work
represents a promising avenue for the development of novel anti-septic treatments, inspired by nature’s innate
defense strategies.

1. Innate immunity and toll-like receptors (TLRs)

The mammalian body is constantly exposed to foreign micro-
organisms, which all need to be controlled in order to avoid invasive
infections and sepsis. The innate immune system represents a first line
of defense, providing a rapid response to potential pathogens. The Toll-
like receptors (TLRs), of which ten functional members exist within the
human genome, are prominent members of this host defense system.
Their dysregulation has been linked to numerous disease states, making
them important potential therapeutic targets [1]. TLRs recognize evo-
lutionarily conserved molecular motifs referred to as pathogen-asso-
ciated molecular patterns (PAMPs), a group encompassing a broad
spectrum of biomolecules [2,3]. For example, at the cell surface TLR2
can form heterodimeric complexes with either TLR1 or TLR6 to re-
cognize lipopeptides and lipoproteins, whilst homodimeric TLR5 can be

activated by bacterial flagellin. Intracellularly, TLR3, TLR7, TLR8, and
TLR9 bind nucleic acids derived of various microbial origins. TLR4
recognizes a complex glycolipid from Gram-negative bacterial species
termed lipopolysaccharide (LPS) [4], and is of particular biomedical
interest given its over-exposure to LPS during serious infections to LPS
can lead to sepsis [1].

The N-terminal ectodomain of each TLR is responsible for ligand
recognition, and is connected to a cytoplasmic Toll/Interleukin-1 re-
ceptor (TIR) domain via a single transmembrane helix. The ectodomain
is highly conserved across the TLR family, and is composed of rigid
leucine rich repeats (LRRs) that yield curved, solenoidal structures. The
typical LRR is ˜20-30 residues in length and contains the LxxLxLxxN
motif [2,5,6]. The resultant solenoids are composed of parallel β-
strands, stabilized on the convex side of the structure by leucines
forming the hydrophobic core and asparagines forming a continuous
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backbone hydrogen-bonding network. In typical LRR proteins, the “x”
residues form variable structures on the concave, solvent-exposed sur-
face, and often play roles in binding of ligands. In contrast, in TLRs, the
convex regions are involved in ligand recognition, and many of the LRR
units deviate from the canonical pattern, with unusual structural ele-
ments [3,7,8]. Productive PAMP binding by the TLR ectodomain leads
to receptor dimerization, resulting in a characteristic “m-shaped”
complex with both C-termini at the center. This results in juxtaposition
of the two TIR domains, which are then proposed to serve as a scaffold
for recruitment of adaptor proteins, leading to downstream activation
of transcription factors such as NF-κB and induction of inflammatory
cytokines [2,7,9,10].

2. The TLR4 pathway and Sepsis

TLR4 is the archetypal innate immune receptor, and is of particular
biomedical interest as a target for anti-inflammatory drugs for the
treatment of numerous diseases [1]. Its PAMP, LPS, is a complex gly-
colipid derived from the Gram-negative bacterial outer membrane, in
which it serves a protective role and restricts antibiotic influx. The main
bioactive component of LPS is lipid A, which contains multiple acyl tails
and a phosphorylated, β(1→6)-linked diglucosamine headgroup, and
anchors the molecule to the external leaflet of the membrane. TLR4
does not function in isolation, likely because the hydrophobic lipid A
component of LPS strongly disfavors exit from membranous or ag-
gregate phases, thereby hindering exposure for ligand recognition. LPS
is first complexed by LPS binding protein (LBP) in serum [11], which
serves to increase the effective sensitivity of the host response, though it
may not be absolutely essential for stimulation of cells in vivo [12–14].
LPS is next transferred to a glycosyl-phosphatidylinositol (GPI) an-
chored “adaptor protein”, cluster of differentiation 14 (CD14) [15],
which is also composed of LRRs but has no intrinsic signaling capacity
[16–18]. CD14 transfers LPS to TLR4 as part of a complex [19–21] with
the co-receptor myeloid differentiation factor 2 (MD-2) [22,23], which
adopts an immunoblogulin-like fold containing a hydrophobic interior
specialized for binding lipid acyl tails.

Tiny amounts of LPS are required to stimulate TLR4, making it
uniquely sensitive to potential invading pathogens [24]. Conversely,
over-stimulation of TLR4 can be highly deleterious, since systemic in-
flammation can lead to sepsis and septic shock. It has been estimated
that around 6 million deaths result from sepsis worldwide [25], and it
remains a primary killer in intensive care units, worsened by the ever-
growing antimicrobial resistance crisis. Subtle variations in the che-
mical structure of lipid A can have a major impact upon the response
[24]; hexa-acylated lipid A from E. coli is a potent TLR4 agonist, but
alterations in the nature of the acylation pattern results in antagonism,
as exemplified by its biosynthetic intermediate lipid IVa or the non-
toxic lipid A from R. sphaeroides [26]. Nevertheless, while numerous
studies have supported the concept of TLR4-targeted anti-septic therapy
based on lipid A analogues [27–29], none have yet been clinically ap-
proved.

3. A computational approach to immune function & inhibition

A better molecular-level understanding of the determinants of LPS
transfer and recognition within the TLR4 pathway would facilitate the
search for novel immunotherapeutics. To this end, molecular dynamics
(MD) simulations provide a classical physics-based framework to gen-
erate realistic “movies” of biomolecules in unparalleled spatial and
temporal resolution [30,31]. In recent years, simulations have provided
a means to extend our knowledge from experimentally derived static
“snapshots” of innate immune receptors [16,17,20,21,32] to the dy-
namic regime, as reported by our group [33–43,78] and others [44–48].
As described below, such an approach has enabled us to elucidate the
regulatory conformational changes associated with binding of LPS li-
gands, and hence molecular rationalization of diverse structure-activity

data [33–38]. Additionally, coarse-grained (CG) modelling [49,50], in
which sets of atoms are grouped together into larger particles to sim-
plify the system of interest, yields orders-of-magnitude increases in the
accessible scales that may be simulated, thereby enabling us to study in
silico the membrane assembly processes of higher-order immune com-
plexes [39,40]. Furthermore, we have begun to leverage this “multi-
scale” description of the TLR4 pathway and its components, towards
the discovery of previously undisclosed antibacterial and antiseptic
mechanisms of host-defense peptides (HDPs) that occur naturally
during wound healing [41,34–43].

4. Atomic-resolution simulations unravel the mechanisms of TLR4
signaling

To explore the molecular mechanisms by which TLR4 may distin-
guish between agonistic versus antagonistic ligands, we performed
atomic-resolution simulations in the presence of a range of lipid A
analogues [33]. In particular, we initiated simulations from the crys-
tallographically observed “active” state of the complex [21], composed
of a (TLR4/MD-2)2 “dimer of dimers” (Fig. 1A). The simulations re-
vealed that the β-cup of MD-2 (like that of related lipid-binding proteins
[34]) undergoes “clamshell-like” motions as a result of adaptation to
the size and shape of the bound ligand. These motions are coupled to
conformational changes in a loop containing a key phenylalanine re-
sidue, F126. Consistent with the X-ray structure [21], the sidechain of
F126 remained pointing into the MD-2 hydrophobic cavity to interact
with the lipid acyl tails during simulations in the presence of agonistic,
hexa-acylated E. coli lipid A (Fig. 1B, left). In contrast, when bound to
under-acylated lipid A analogues, or in the ligand-free state, the F126

Fig. 1. Atomic-resolution simulations of the (TLR4/MD-2)2 complex. (A)
Snapshot of the receptor complex bound to E. coli lipid A agonist. Protein is
shown in cartoons format including the two large, solenoidal TLR4 chains and
the two small, lipid-bound MD-2 chains. Lipid is shown in CPK wireframe
format, and bulk water molecules are shown as van der Waal’s spheres. The
region of one the gating loop regions containing F126 is highlighted by a black
circle. (B) Conformational changes associated with ligand-induced gating. The
active state of the complex is maintained in the presence of agonist (left), but in
the absence of agonist disassembly occurs as a result of reorientation of F126
(right). Protein chains are colored as in (A), whilst F126 (wireframe) and sur-
rounding hydrophobic residues (van der Waal’s spheres) are shown in CPK
format.
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loop was consistently observed to reorient, thereby disrupting a hy-
drophobic cluster at the dimeric interface formed with the carboxy-
terminal LRRs (modules ˜15-17) (Fig. 1B, right) which is expected to
deactivate the complex. Thus, F126 of MD-2 is proposed to act as a
molecular switch in determining TLR4 activation; this is consistent with
an F126A mutant which can bind lipids but interferes with signaling
[20,21,32], and with NMR measurements of F126 loop dynamics
during ligand binding [51].

This work has since been extended, to rationalize the thermo-
dynamic basis for the capacity of the F126 loop to distinguish between
different lipid A analogues [35], and also to explore possible larger-
scale dynamics in the receptor complex associated with ligand binding
[37,38]. In particular, the global collective motions of the active com-
plex were analyzed to investigate how ligand induced conformational
changes might be transmitted to the intracellular TIR domains. In the
agonistic lipid A bound state, only subtle rotational motions of the
ectodomains were observed with respect to one another, suggesting the
TIR domains would remain closely apposed. In contrast, in the absence
of ligand [37], or in the presence of non-activating free fatty acids [38],
significant relative fluctuations of the C-termini were observed, leading
to the prediction that TIR domains would become separated and hence
block downstream signaling, analogously to the crystallographic mea-
surements made for TLR8 upon ligand unbinding [52]. Combined with
single-molecule imaging experiments, our data collectively suggest a
two-step model for TLR4 activation, in which agonistic LPS binding
triggers conformational changes that favor juxtaposition of TIR do-
mains, forming a nucleating platform for MyDDosome assembly [37].

5. Multiscale simulations trace the pathway to LPS recognition

With the knowledge that TLR4 functions efficiently only as part of a
complex relay of receptors and co-receptors, we embarked upon a
multiscale modelling study with the aim of tracing the passage of a
single LPS molecule from its native bacterial envelope environment to
the terminal receptor complex at the plasma membrane surface [40].
This was rooted in the use of the ubiquitous Martini CG forcefield
[53,54], which maps approximately four heavy atoms into a single
particle, thereby simplifying the description of the system. CG para-
meters were carefully derived for LPS, GPI-anchored CD14, MD-2, and
TLR4 embedded within a mammalian membrane model via a trans-
membrane helix. Importantly, the dynamics of each component protein
in CG resolution were calibrated against their atomistic counterparts, to
ensure accurate reproduction of the membrane-association and ligand
binding behavior known to be mechanistically important [33,39]. By
utilizing “enhanced sampling” simulation methodologies to estimate
the equilibria between ligand-bound and free states [55], we were able
to rigorously calculate the binding energy of LPS to each receptor and
coreceptor in both CG [40] and atomistic detail [35,42]. Based on these
calculations, LPS molecules traversing the receptor cascade were con-
firmed to fall into a “thermodynamic funnel”, such that the large en-
ergetic penalty for extraction of LPS from the bacterial membrane or
from lipid aggregates is overcome by the favorable affinity gradient
presented by CD14 and the terminal receptor complex (Fig. 2).

Multiscale modelling of the TLR4 relay also enabled elucidation of
the previously undisclosed structure of the CD14 ligand bound state
[16,17,56,57], and confirmed that its hydrophobic cavity is highly
malleable [58,59], helping to explain its promiscuity for recognizing
multiple PAMPs. Extended simulations revealed that the GPI-anchored
CD14 ectodomain spontaneously adopts tilted orientations such that its
binding pocket may “dock” with that of TLR4-bound MD-2, with the
carboxy-terminal LRRs 13–15 of TLR4 primarily responsible for the
physical interaction with CD14 [40], consistent with single-molecule
studies [60]. The exchange of LPS between the two cavities was con-
sequently shown to proceed via a contiguous “hydrophobic bridge”
which also encompasses the key F126 residue in MD-2 [40]. Collec-
tively, these observations have provided high-resolution insights into

the key determinants governing PAMP recognition, and a structural
basis for potential design of novel immunomodulatory molecules.

6. Anti-inflammatory scavenging of LPS by endogenous peptides

Microbial infection in wounds triggers multiple arms of the innate
immune system, including the deployment of a large family of HDPs,
which are diverse in structure but typically amphipathic and cationic
[61]. Many such HDPs have been the subject of simulation studies [62],
particularly in the context of elucidating mechanisms of bacterial
membrane disruption ([63,64];). HDPs have also been shown to exhibit
immunomodulatory activities [65,66]; many have a strong affinity for
LPS, and this is thought to enable endotoxin “scavenging” and clear-
ance, thereby dampening TLR4-based signaling [67]. In recent years, a
group of HDPs associated with the clotting cascade have received
special interest due to their multifunctionality. Thus, TLR4 stimulation
by LPS triggers the upregulation of tissue factors and formation of
thrombin, leading to coagulation and fibrin formation [68], but pro-
teolysis of thrombin by human neutrophil elastase also results in the
formation of multiple thrombin-derived C-terminal peptides (TCPs) of
around 2 kDa in wounds, as exemplified by FYT21 (NH2-FYTHVF-
RLKKWIQKVIDQFGE-COOH) and HVF18

Fig. 2. The thermodynamics of LPS transfer in the TLR4 “funnel”. Biased
simulation approaches were used to estimate the free energies of transfer of an
LPS molecule between the various states depicted in the figure; transfer to
TLR4/MD-2 is overall a favorable process. Proteins are shown in molecular
surface format, and lipids are shown in wireframe. Each system and the asso-
ciated free energies between them are labeled inset.

Fig. 3. TCP96 aggregation as a means of LPS scavenging. Simulations were
used to study the spontaneous process of aggregation of multiple TCP96 and
LPS molecules, to explain their capacity to form amorphous, amyloid-like ag-
gregates in wounds. The LPS binding regions are indicated on the surface of a
single TCP96 on the left, whilst the resultant aggregates with LPS are shown on
the right. TCP96 is in molecular surface format, whilst LPS molecules are shown
in thick wireframe format.
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(NH2-HVFRLKKWIQKVIDQFGE-COOH) ([69,70];), sequences included
in the prototypic TCP GKY25 (NH2-GKYGFYTHVFRLKKWIQKVIDQ-
FGE-COOH) [67,71].

TCPs have antimicrobial activity, but also serve anti-endotoxic
functions in vitro and in vivo [67,71–73], presumably as a result of LPS
scavenging [70]. Lending support to this, NMR was recently employed
to determine the conformation of a TCP (HVF18) in complex with LPS
[42]. NMR-derived restraints were subsequently incorporated into
atomic-resolution simulations of a single amphipathic TCP bound to an
LPS micelle, revealing that the curved, positively charged N-terminal
segment interacts with lipid A phosphate groups, whilst hydrophobic
residues in the C-terminal helix contact the lipid interfacial and acyl tail
regions [42]. CG models were developed to assess the capacity for LPS
neutralization; a series of ˜40 μs simulations revealed spontaneous as-
sembly and dispersion of multiple peptides into LPS aggregates, with
the basic N-terminal region competing with calcium ions cross-linking
lipid A phosphates, thereby loosening the interface. A comparison be-
tween GKY25, HVF18, and a truncated construct, VFR12, also disclosed
a graduated ability of TCPs with different lengths to shield LPS tails
from solvent, which correlated with their experimentally measured
potency for LPS neutralization [42].

Interestingly, proteolysis of thrombin has also been shown to form a

C-terminal fragment of 11 kDa (TCP96) which likely precedes the
emergence of the smaller TCPs described above. TCP96 results in
amorphous, amyloid-like aggregates in wounds in the presence of both
LPS and bacteria, aiding microbial clearance and LPS scavenging [41].
To rationalize this aggregation at the molecular level, atomic-resolution
simulations of TCP96 were employed, revealing the presence of an
exposed, amphipathic region that forms a hydrophobic cluster with a
nearby twisted – and hence strained – β-sheet motif. Extended CG si-
mulations subsequently confirmed that the tails of individual LPS mo-
lecules intercalate into this hydrophobic region to form extended ag-
gregates (Fig. 3), and the resultant relaxation of the twist in the
associated sheet likely explains the propensity for increased β-content
upon aggregation [41]. This aggregation-based host defense mechanism
represents an interesting link with amyloidogenic proteins, some of
which have been reported to exhibit antimicrobial and anti-in-
flammatory activities [74].

7. Alternative routes to immunomodulation

Whilst LPS scavenging is undoubtedly a dominant mode for
blocking TLR4 signaling, it is likely not the only mechanism. There are
numerous reports in the literature of peptides that can bind LPS without
blocking sepsis [75]; for example, a variant of GKY25 in which the
sequence is scrambled retains high LPS affinity but is no longer anti-
endotoxic [67,76]. Pre-incubation of cells with TCPs, followed by
washing and subsequent addition of LPS is still effective in preventing
downstream NF-κB activation, whilst electron microscopy studies have
demonstrated that TCPs co-localize with LPS on the surface of mono-
ctyes [72]. Collectively, these observations hint at specific interactions
with targets at host cell membranes. Consistently, we recently used
computational modelling approaches, guided by our multiscale char-
acterization of the TLR4 relay and the mapped lipid transfer pathway
[40], to uncover a previously undisclosed mode of interaction between
CD14 and HVF18 [42]. The TCP was predicted to bind to the hydro-
phobic pocket of CD14 via its N-terminal tail, with the C-terminal helix
bound to polar residues surrounding the pocket that have been shown
to be important in LPS capture [56,57]. Microscale thermophoresis
measurements revealed a low-micromolar affinity of HVF18 and GKY25
for CD14, and competitive inhibition of LPS binding, whilst chemical
cross-linking and mass spectrometry analysis confirmed the predicted
TCP-CD14 binding mode [42]. Based on subsequent atomic-resolution
simulations of the CD14-HVF18 complex, the solvent-exposed hydro-
phobic tails of an LPS molecule placed near to the CD14 N-terminus are
unable to spontaneously enter the high-affinity binding pocket, con-
sistent with the notion that TCPs competitively impede LPS capture
(Fig. 4). Nevertheless, it cannot be ruled out that such peptides may also

Fig. 4. Simulation snapshot depicting the anti-septic mode of action of a
TCP when complexed with CD14. The TCP, HVF18, is bound to the N-term-
inal hydrophobic pocket of CD14, and this blocks the entry of an LPS molecule.
Each molecule is colored differently, and labeled.

Fig. 5. Summary of TLR4 pathway and anti-septic me-
chanisms of TCP peptides. (A) LPS is bound by CD14, ex-
tracted from aggregates or the bacterial membrane, facilitated
by LBP. LPS is then transferred to TLR4/MD-2; agonistic LPS
structures stabilize the dimeric (TLR/MD-2)2 complex, re-
sulting in productive downstream signaling. (B) Proteolysis of
thrombin during the clotting cascade leads to the formation of
multiple TCPs. These peptides inhibit the TLR4 pathway, ei-
ther by aggregating/scavenging free LPS molecules, or by di-
rect binding to CD14 to prevent LPS transfer to TLR4/MD-2.
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interfere with complexation of CD14 with the TLR4/MD-2 complex,
and/or block lipid transfer between them.

Thus, multiple orthogonal approaches indicate that TCPs effect their
anti-endotoxic activity both indirectly, through LPS sequestration, and
directly, via antagonistic binding to CD14. These different mechanisms
are summarized in Fig. 5. It is worth noting that multiple TCP variants
with variable activities are observed endogenously (Saravanan, 2017),
and targeted proteolysis under different conditions may help to fine-
tune the innate response to infection and clearance, as required
([67,71]). We have also recently shown that TCPs exhibit a decreased
affinity to CD14 and an increase in LPS-binding, with decreasing pH
(Holdbrook et al), factors that may affect the modulatory roles of TCPs
in the control of bacteria and endotoxin-induced inflammation during
infection. The observed micromolar affinities and multitude of inter-
actions, further fine-tuned by the local microenvironment, are sugges-
tive of transient interactions that help to modulate the host immune
response. Such transient interactions are observed throughout nature,
and are a promising avenue for the development of novel anti-septic
drugs [77].
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