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We review studies of the protein evolution that help to formulate

rules for protein design. Acknowledging the fundamental

importance of Dayhoff’s provision on the emergence of

functional proteins from short peptides, we discuss multiple

evidences of the omnipresent partitioning of protein globules

into structural/functional units, using which greatly facilitates

the engineering and design efforts. Closed loops and

elementary functional loops, which are descendants of ancient

ring-like peptides that formed fist protein domains in

agreement with Dayhoff’s hypothesis, can be considered as

basic units of protein structure and function. We argue that

future developments in protein design approaches should

consider descriptors of the elementary functions, which will

help to complement designed scaffolds with functional

signatures and flexibility necessary for their functions.
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Introduction
A wealth of sequence information [1] combined with new

high-throughput structural and biophysical approaches [2]

fuel ambitious goals in protein research, shifting its focus

from tedious annotation-characterization tasks to the

laboratory evolution [3,4] and design efforts [5�,6]. Diversity

of tasks spans from the engineering of modified functions

[4,7] to de novo design of structures with required activities

[8], invoking respective range of experimental methods and

theoretical approaches [2–4,9]. While laboratory evolution

can be associated with mechanisms of protein evolution

since emergence of LUCA [4,10,11], lessons from the very
www.sciencedirect.com 
emergence of folds and functions in the Origin of Life can be

instructive  for de novo design [12��,13,14��,15,16]. Figure 1

illustrates a correspondence between events and underlying

mechanisms in the evolution and approaches in protein

engineering and design that can provide similar outcomes.

Factors of success in the enzyme engineering are similar to

those that work in natural evolution, including availability of

appropriate starting point (wild-type protein), its designabi-

lity [11,14��] or evolvability [4], and a potential for the

acquisition of a new function [4]. The cornerstone method,

which allows to obtain robust tailor-made enzymes, is

directed evolution [3,4]. One of the major challenges in

the protein modification process – correct consideration of

epistatic interactions – is typically addressed via ancestral

reconstruction [4,17,18�,19], which also helps to facilitate

and broaden the substrate specificity [20–22]. Promiscuity of

enzymes can be achieved via neutral drift, which can evolve

them into generalists with additional activities [23,24].

Among the most interesting recent achievements in labora-

tory evolution of proteins is the emergence of catalysis in a

noncatalytic protein scaffold, such as evolution of chalcone

isomerase from a noncatalytic ancestor [19] and of cyclohex-

adienyl dehydratase from an ancestral solute-binding

protein [17]. Extensive computational analysis showed that

multiple functions can evolve in nitroreductase superfamily

as a result of insertions at key positions in the flavin-binding

scaffold [25]. Versatility of promiscuous sulfatase was also

used in the evolution of catalysis via repurposing on the basis

of high reactivity of its permissive active-site architecture

that allow multiple substrate binding modes [24]. Advances

in understanding of universality [26] and power of allosteric

regulatory mechanisms [27] prompt us to start using them as

well in protein design [28].

While ancestral reconstruction can drive one up the

evolutionary road to LUCA domains and can potentially

providecorrect startingpoint fordirectedevolution, it cannot

help de novo protein design. The latter is obviously linked to

the question how first folds and functions emerged. Here, we

will discuss rules of protein design that nature teaches us,

starting from the seminal Margaret Dayhoff’s work [15,29]

and showing how her provision on the basis of few available

sequences found multiple confirmations in current times of

big data and provided theoretical foundation for the protein

design from fragments. We will show evidences that natural

proteins are built from descendant of ancient peptides,

will review developments in engineering of modified and

chimeric structures from parts of natural proteins, and efforts

on the de novo design on the basis of elementary structural-

functional units. We will argue that basic elementary units of
Current Opinion in Structural Biology 2019, 58:159–165
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Figure 1
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The evolution-design connectivity scheme.

Major events in the prebiotic and biological evolutions are shown in the middle in relation to relevant chemistry, physics, and biology that

determined these outcomes. Different methods in protein engineering and de novo design should be used depending on the task.
proteins – closed loops or returns of the protein backbone

[30] – were determined by the polymer nature of the

polypeptide chain and, then, provided a foundation for

elementary units of protein function – elementary functional

loops (EFLs, [14��]). We will show that closed loops and

EFLs are apparently descendants of prebiotic ring-like

peptides that merged into first functional folds, in agreement

with what was hypothesized by Eck and Dayhoff yet in

1966 [29]. Finally, we will consider a notion of descriptor of

theelementary function,whichweproposedas thebasicunit

for future de novo protein design and engineering [13,14��].

Modular structure of proteins from the
evolutionary perspective
A number of recent works support Dayhoff’s idea of the

evolution of modern proteins through the fusion of

fragments, which itself may have emerged through the

merger of even shorter and simpler ancient peptides [16].

Noteworthy, high-throughput (anti)-correlation analysis of

complete proteomes allowed to obtain the most probable

sizes (five–six residues) and compositional trends of these

peptides [16]. The ‘Dayhoff-fragment’ stage of the protein

evolution left many more marks in contemporary proteins

than the previous, short-peptide stage of evolution. For

example, analysis of the sequence-fragment families

revealed common ancestry of two ancient (ba)8-barrel
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and flavodoxin-like folds, which is characterized by the

conserved (ab)2 motif of about 40 residues [31]. Another

ancient fingerprint [14��] indicates the common ancestry of

Rossman-fold enzymes [32]. Symmetric b-trefoil fold was

shown tobea resultof the oligomerization ofsimplepeptide

motifs [33]. Single b-hairpinstructure has been identified as

a structural unit of different all-b structures, such as

Immunoglobulin, b-trefoil, b-roll, b-prism, b-propeller,
b-solenoid folds (see Figure 4 in [34] for illustration). Since

most of all-b proteins are involved in binding of other

proteins, corresponding b-hairpin motifs typically have

structural or ‘binder’ functional signatures discussed in

[35]. The set of 40 fragments was proposed as a vocabulary

of ancient peptides that existed at the origin of proteins

[36]. Numerous evolutionary footprints were found in the

analysis of reused protein segments in the large represen-

tative set of protein domain [37]. The Evolutionary

Classification Of protein Domains (ECOD) database

provides an overview of how duplication and divergence

of small motifs worked in the emergence and evolution of

protein function [38�].

From protein engineering and fragment-based
design to de novo design
Evolutionary emergence of folds and functions via the

fragment duplication, fusion, and recombination also
www.sciencedirect.com
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finds a strong support in numerous engineering and

design efforts. Designs of different topologies followed

by the furnishing them with functions [39] were

performed on the ba-barrels (using duplication and

recombination of fragments), b-trefoils (duplication)

and b-propellers (duplication). Recombination between

the (ba)8-barrel and flavodoxin-like folds yielded a

chimeric protein with modified functional characteristics

[40]. Investigation of repeat structures designed from

tandems of helix-loop-helix-loop structural motifs

showed that natural repeat proteins occupy only a small

fraction of possible sequence-structure space, concluding

that many novel repeat proteins with specified geometries

can be designed [41]. Assembly of complex b-sheet
topologies from the de novo designed building blocks

corroborated an assumption [34,35] that b-sheet fusion

mechanism may have worked in the emergence of

complex b-sheets during natural protein evolution [42].

An automated SEWING framework was used for design

of helical proteins showing some successful outputs and

justifying its further development and extension to other

types of protein scaffolds [43].

One of the most important goals in protein research is

de novo design, which is currently an area of rapid

developments and great achievements [5�,6]. Recent

designs include a-helical bundles with 3–5 [44] and

5–7 [45] helices obtained in Thomson et al. labs, respec-

tively. Baker lab also produced completely new

TIM-barrel sequence-scaffold designs guided purely

by geometrical and chemical principles [46]. Despite

challenges in the design of the all-b-sheet proteins,

because of the large fraction of non-local interactions

that lead to slower folding rates and potential aggrega-

tion, the same group designed double-stranded b-helix
on the basis of rules describing the geometry of b-arch
loops and their interactions in b-arcades [47]. The

binding sites of natural cytokines were recapitulated

by the otherwise unrelated in topology or amino acid

sequence de novo globular structures [48�]. Strategies for

designing non-natural enzymes and binders were

recently reviewed in [8], highlighting developments

in computational methods and applications of these

techniques in design of receptors, sensors, and enzymes.

One of the most recent automated methods, FuncLib, is

based on the phylogenetic analysis and Rosetta design

calculations, which allows one to improve the enzyme

activity via multipoint mutations at the enzyme active

site [7]. Khersonsky and Fleishman, who are among

the authors of FuncLib, also advocate a synthesis of

engineering by fragment substitutions/exchanges and

de novo design strategies in order to build new proteins

on the basis of ‘ready-made parts’ [49]. They propose

that future design method combining phylogenetic anal-

ysis, structure/sequence bioinformatics, and atomistic

modelling will be more successful rather than above

methods used individually.
www.sciencedirect.com 
Closed loops and elementary functional loops
in the emergence and evolution of protein
function
Accepting the strategy of learning from nature and refer-

ring to the previous knowledge of proteins built form

fragments, one may ask a question about optimal nature-

driven unit of proteins [13] that determine and facilitate

their structural-functional characteristics. Below, we will

share our experience in finding and investigating basic

units of globular proteins, will describe the most recent

experimental and theoretical evidences of their exis-

tence, including the very recent successful de novo design

of functional folds on the basis of these units, and, finally,

will discuss the notion of the descriptor of the elementary

function and ways of using it in future design efforts.

Exploring the hierarchy of protein domain structure

[50,51] we arrived to the question about basic unit of

globular proteins, which would allow one to build a

consistent picture of the protein structure organization,

folding, and function [13]. It was hypothesized that,

because polypeptide backbone chiefly determines

protein architecture and topology, its analysis could be

instrumental in finding the most basic and universal

protein units. An exhaustive enumeration of subsections

of protein backbones with contacting ends revealed the

universal basic unit of soluble proteins, closed loops or

returns of the polypeptide backbone with preferential

contour length of 25–30 residues [30]. The loop-n-lock

structure [52] of globular proteins [30,34,53] provides a

foundation for the hierarchy of protein domain structure

[54,55] and co-translational scenario of the folding

process [56–58,59�] demonstrated in recent FRET/CQ

experiments [60] on the basis of loop hypothesis [59�] and

supported by the Sequential Collapse Model [58]. Many

other observations of the structural and evolutionary

relevance of closed loops were reviewed in detail

in Ref. [13].

We further proposed the notion of Elementary Functional

Loops (EFLs), which are formed by closed loops that carry

oneor fewfunctional catalytic or ‘binder’ residuesandserve

as a minimal building block in functional mechanisms. We

have developed a rigorous computational procedure for the

derivation of EFL evolutionary prototypes [61,62]. These

prototypes are represented in modern proteins by EFLs,

which are presumably descendants of simple ring-like

prebiotic peptides that, according to Eck and Dayhoff

[29], fused into first protein domains/folds (Figure 1).

Therefore, EFLs of a certain prototype can belong to

phylogenetically unrelated proteins from remote super-

families or different folds. At the same time, intermediate

sequence profiles obtained in the process of the prototype

derivation can be associated with ancestors typical for

certain functional (super)families. Figure 2, the P-loop

prototype circle, illustrates the relationship between the

profiles and prototype of the phosphate-binding signature
Current Opinion in Structural Biology 2019, 58:159–165
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Figure 2
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The P-loop prototype circle.

The group of representative glycine-rich elementary functional loops that bind different (di)nucleotide-containing ligands is shown. ‘Mono’ and ‘Di’

signatures in the center show the generalized profiles for the phosphate binding in the nucleotide-containing and dinucleotide-containing ligands.

The ‘Prototype’ logo describes presumable ancient prototype of all glycine-rich phosphate-binding signatures that exist in contemporary proteins.
obtained on the basis of NBDB [63] that work in

the binding of (di)nucleotide-containing ligands. The

functional motifs typical for the binding of phosphates

n different nucleotide-containing and dinucleotide-

containing ligands correspond to ‘MONO’ and ‘DI’ proto-

types with GxxGxG and GxGxxG signatures, respectively.

The ancient prototype that presumably gave rise to all

phosphate-binding fragments yields a Gly-rich signature –

GxGGxG [14��,63]. Using collection of prototypes of

different elementary functions we showed how contempo-

rary proteins are built from a limited number of elementary

functions and investigated intricate relations between

different folds and functional superfamilies [14��]. Tracing

domain history onto a bipatriate network of elementary

functional loop sequences, Aziz et al. provided a consistent

picture of the emergence and early history of the molecular

function [12��,14��]. Importantly, the closed-loop/return

shape and characteristic size is determined by the polymer

nature of polypeptide chains [64,65], and it is corroborated

in many recent studies of the protein evolution [13]. For

example, the median length of 40 fragments proposed

as a reference set of ancient peptides [36] is 24 residues
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in agreement with the preferential size of closed loops

[13,30]. Detection of reused evolutionary footprints in

the representative set of protein domains was shown to

be more extensive when the length threshold was lower

than 35 residues [37]. The priority of the loop closure

over the exact secondary structure content was shown

through the persistence of the protein chain returns

[66]. Ignoring secondary structure elements reveals

connection between the TIM-barrel and flavodoxin-

like folds stronger than those between superfamilies of

the flavodoxin-like folds superfamilies [31]. Indications

that a simple b-hairpin served as an origin of different

all-b proteins prompts us to assume that the b-hairpin
itself can be just another way of the loops closure

[13,52] used in the evolution followed by their fusion

and recombination into distinct all-b folds. The NBDB

database of profiles involved into the (di)nucleotide

binding [63] further supports the conclusion on the

primary importance of the loop closure and secondary

role of the context-dependent secondary structure

[13,30,34,53,56] with important implications for pro-

tein design.
www.sciencedirect.com
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Defining and deriving the descriptor of
elementary function for protein design
A principal difference between the prototypes

[14��,35,61,62] and reconstructed ancestors [17,18�,19,20]
can be also associated with the different modes of

action in protein engineering and design: while ancestors

can be used in modifications within (super)families

[18�] and design from fragments [39–41,49], prototypes

should be instrumental in de novo design of proteins

(Figure 1). For example, prototype of the phosphate-biding

loop was recently used in de novo design of the b-a repeat

P-loop protein, which yielded stable and soluble

molecule that binds ATP in a magnesium-independent

manner, polynucleotides, RNA, and single-strand DNA

[67].Anticipating importance ofusingfunctional signatures

obtained from natural proteins corroborated in the

above design of the P-loop protein [67], we concluded

that it is necessary to develop comprehensive description

of all features of EFLs that will be used in de novo
design. To this end, the notion of the descriptor of

elementary function was introduced using an example of

nucleophile as the key element of the protease catalytic

triad [14��]. We proposed that the descriptor of elementary

function should contain exhaustive information on all

possible sequences, structures, functional signatures,

interactions inside the EFL and with the rest of the protein

and so on, which are present in different realizations
Figure 3
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of this elementary function observed in natural proteins.

The probabilistic model should be applied to the data

collected for every descriptor, where realization of all

parameters will depend on the requirements to the targeted

protein structure and function. Figure 3 shows schematic

representation of realizations of the phosphate-loop

descriptor, and corresponding signatures and their interac-

tions with the nucleotide-containing and dinucleotide-

containing ligands.

Although there is no doubt that future design efforts

should be based on the greatly advanced and successful

Rosetta-based approach and its developments [68], we

propose that it can be complemented by the library of

descriptors of elementary functions, which will contain

a comprehensive information on the functions of

fragments and possible realizations of their character-

istics in designed structures. As a result, while the

major guiding principle of the design procedure,

finding the energy minimum in the sequence-structure

ensemble, should be strictly and universally followed,

the probabilistic adjustments of fragments in the folds/

domains obtained from realizations of corresponding

descriptors would allow one to depart from the

perfectly stable but frequently functionally incapable

protein and to achieve flexibility and dynamics

necessary for its function.
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 nucleotide-and dinucleotide-containing ligands.

alized in different signatures interacting with the nucleotide-containing

hich groups of corresponding ligands are in contact with the protein

(e.g. AMP, ATP, GDP, NAD, FAD) indicate that their atoms are in
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