Bond PJ

Extending the Martini coarse-grained forcefield to N-glycans

Glycans play a vital role in a large number of cellular processes. Their complex and flexible nature hampers structure-function studies using experimental techniques. Molecular dynamics (MD) simulations can help in understanding dynamic aspects of glycans if the forcefield (FF) parameters used can reproduce key experimentally observed properties.

Read

A benzene-mapping approach for uncovering cryptic pockets in membrane-bound proteins

Molecular dynamics (MD) simulations in combination with small organic probes present in the solvent have previously been used as a method to reveal cryptic pockets that may not have been identified in experimental structures. We report such a method implemented within the CHARMM forcefield to effectively explore cryptic pockets on the surfaces of membrane-embedded proteins using benzene as a probe molecule.

Read

Multiscale modelling and simulation of viruses

In recent years, advances in structural biology, integrative modelling, and simulation approaches have allowed us to gain unprecedented insights into viral structure and dynamics. In this article we survey recent studies utilizing this wealth of structural information to build computational models of partial or complete viruses and to elucidate mechanisms of viral function.

Read

Thrombin-derived C-terminal fragments aggregate and scavenge bacteria and their proinflammatory products.

Thrombin-derived C-terminal peptides (TCPs), including a major 11-kDa fragment (TCP96), are produced through cleavage by human neutrophil elastase and aggregate lipopolysaccharide (LPS) and the Gram-negative bacterium Escherichia coli However, the physiological roles of TCP96 in controlling bacterial infections and reducing LPS-induced inflammation are unclear. Here, using various biophysical methods, in silico molecular modeling, microbiological and cellular assays, and animal models, we examined the structural features and functional roles of recombinant TCP96 (rTCP96) in the aggregation of multiple bacteria and the Toll-like receptor (TLR) agonists they produce.

Read

Not all therapeutic antibody isotypes are equal: The case of IgM versus IgG in Pertuzumab and Trastuzumab

The therapeutic potential of immunoglobulin M (IgM) is of considerable interest in immunotherapy due to its complement-activating and cell-agglutinating abilities. Pertuzumab and Trastuzumab are monoclonal antibodies used to treat human epidermal growth factor receptor 2 (HER2)-positive breast cancer but exhibit significantly different binding affinities as IgM when compared to its IgG isotype.

Read

Flavivirus Cross-Reactivity to Dengue Nonstructural Protein 1 Antigen Detection Assays

Dengue virus (DENV) and Zika virus (ZIKV) are flaviviruses of public health relevance. Both viruses circulate in the same endemic settings and acute infections generally manifest similar symptoms. This highlights the importance of accurate diagnosis for clinical management and outbreak control. One of the commonly used acute diagnostic markers for flaviviruses is nonstructural protein 1 (NS1).

Read

On the ion coupling mechanism of the MATE transporter ClbM

Bacteria use a number of mechanisms to defend themselves from antimicrobial drugs. One important defense strategy is the ability to export drugs by multidrug transporters. One class of multidrug transporter, the so-called multidrug and toxic compound extrusion (MATE) transporters, extrude a variety of antibiotic compounds from the bacterial cytoplasm.

Read

Linker length affects photostability of protein-targeted sensor of cellular microviscosity

Viscosity sensitive fluorophores termed 'molecular rotors' represent a convenient and quantitative tool for measuring intracellular viscosity via Fluorescence Lifetime Imaging Microscopy (FLIM). We compare the FLIM performance of two BODIPY-based molecular rotors bound to HaloTag protein expressed in different subcellular locations.

Read