Cai Y

Flavivirus genome recoding by codon optimisation confers genetically stable in vivo attenuation in both mice and mosquitoes

The mosquito-borne flaviviruses such as dengue virus (DENV) and Zika virus (ZIKV) have established themselves as major human pathogens. Live attenuated vaccines are seen as the most effective method for preventing flavivirus infection. Flavivirus genome recoding has emerged as a next-generation vaccine development method that acts by rewriting the flavivirus genome. Previous flavivirus genome recoding attempts were based on deoptimising the flavivirus genome. However, these deoptimised flaviviruses were found to be attenuated in a species dependent manner. For example, deoptimised DENV and ZIKV did not demonstrate attenuation in mosquito cells or mosquito animal models, which is undesirable because these mosquito-borne flaviviruses should be attenuated in their mosquito vector to prevent vaccine escape. To overcome these limitations, we adopted a flavivirus genome recoding approach based on the contrary approach of optimising the flavivirus genome and applied it to DENV2 and ZIKV. We found that this genome recoding approach of codon optimisation could confer attenuation in both mouse and mosquito animal models. This indicates that our flavivirus genome recoding approach may be used as a reliable method to construct attenuated vaccine backbones for the mosquito-borne-flaviviruses in general.

Read

Site-Specific Steric Control of SARS-CoV-2 Spike Glycosylation

A central tenet in the design of vaccines is the display of native-like antigens in the elicitation of protective immunity. The abundance of N-linked glycans across the SARS-CoV-2 spike protein is a potential source of heterogeneity among the many different vaccine candidates under investigation.

Read

TRK xDFG Mutations Trigger a Sensitivity Switch from Type I to II Kinase Inhibitors

In TRK fusion–positive cancers, TRK xDFG substitutions represent a shared liability for type I TRK inhibitors. In contrast, they represent a potential biomarker of type II TRK inhibitor activity. As all currently available type II agents are multikinase inhibitors, rational drug design should focus on selective type II inhibitor creation

Read

FOXA1 mutations reveal distinct chromatin profiles and influence therapeutic response in breast cancer

Mutations in the pioneer transcription factor FOXA1 are a hallmark of estrogen receptor-positive (ER+) breast cancers. Examining FOXA1 in ∼5,000 breast cancer patients identifies several hotspot mutations in the Wing2 region and a breast cancer-specific mutation SY242CS, located in the third β strand. Using a clinico-genomically curated cohort, together with breast cancer models, we find that FOXA1 mutations associate with a lower response to aromatase inhibitors.

Read