Chiam KH

Cell-Cell Adhesion and Cortical Actin Bending Govern Cell Elongation on Negatively Curved Substrates

Physiologically, cells experience and respond to a variety of mechanical stimuli such as rigidity and topography of the extracellular matrix. However, little is known about the effects of substrate curvature on cell behavior. We developed a novel, to our knowledge, method to fabricate cell culture substrates with semicylindrical grooves of negative curvatures (radius of curvature, Rc = 20-100 μm). We found that negative substrate curvatures induced elongation of mesenchymal and epithelial cells along the cylinder axis.

Read

A computational model for how cells choose temporal or spatial sensing during chemotaxis

Cell size is thought to play an important role in choosing between temporal and spatial sensing in chemotaxis. Large cells are thought to use spatial sensing due to large chemical difference at its ends whereas small cells are incapable of spatial sensing due to rapid homogenization of proteins within the cell. However, small cells have been found to polarize and large cells like sperm cells undergo temporal sensing. Thus, it remains an open question what exactly governs spatial versus temporal sensing.

Read

Structural analyses unravel the molecular mechanism of cyclic di-GMP regulation of bacterial chemotaxis via a PilZ adaptor protein

The bacterial second messenger cyclic di-GMP (c-di-GMP) has emerged as a prominent mediator of bacterial physiology, motility, and pathogenicity. c-di-GMP often regulates the function of its protein targets through a unique mechanism that involves a discrete PilZ adaptor protein.

Read

Structural analyses unravel the molecular mechanism of cyclic di-GMP regulation of bacterial chemotaxis via a PilZ adaptor protein

The bacterial second messenger cyclic di-GMP (c-di-GMP) has emerged as a prominent mediator of bacterial physiology, motility, and pathogenicity. c-di-GMP often regulates the function of its protein targets through a unique mechanism that involves a discrete PilZ adaptor protein.

Read