Eisenhaber B

The First Quarter Century of the Dense Alignment Surface Transmembrane Prediction Method

Keywords: transmembrane proteins; transmembrane prediction; multiple sequence alignment; dot-plots

Read

About the dark corners in the gene function space of Escherichia coli remaining without illumination by scientific literature

Although Escherichia coli (E. coli) is the most studied prokaryote organism in the history of life sciences, many molecular mechanisms and gene functions encoded in its genome remain to be discovered. This work aims at quantifying the illumination of the E. coli gene function space by the scientific literature and how close we are towards the goal of a complete list of E. coli gene functions.

Read

To kill or to be killed: pangenome analysis of Escherichia coli strains reveals a tailocin specific for pandemic ST131

Escherichia coli is one of the most well-known commensal Gram-negative bacteria, which is commonly associated with the gut microbiome. Since first identified in 1844, it has been widely studied as a model organism in the laboratory. However, recent findings have shown not only the versatility of E. coli living in different ecological niches but also the diversity of its genotypes including strains with pathogenicity for animals and human [1, 2].

Read

Functional Classification of Super-Large Families of Enzymes Based on Substrate Binding Pocket Residues for Biocatalysis and Enzyme Engineering Applications

Large enzyme families such as the groups of zinc-dependent alcohol dehydrogenases (ADHs), long chain alcohol oxidases (AOxs) or amine dehydrogenases (AmDHs) with, sometimes, more than one million sequences in the non-redundant protein database and hundreds of experimentally characterized enzymes are excellent cases for protein engineering efforts aimed at refining and modifying substrate specificity.

Read

Conserved sequence motifs in human TMTC1, TMTC2, TMTC3, and TMTC4, new Omannosyltransferases from the GT-C/PMT clan, are rationalized as ligand binding sites

The human proteins TMTC1, TMTC2, TMTC3 and TMTC4 have been experimentally shown to be components of a new O-mannosylation pathway. Their own mannosyl-transferase activity has been suspected but their actual enzymatic potential has not been demonstrated yet. So far, sequence analysis of TMTCs has been compromised by evolutionary sequence divergence within their membrane-embedded N-terminal region, sequence inaccuracies in the protein databases and the difficulty to interpret the large functional variety of known homologous proteins (mostly sugar transferases and some with known 3D structure).

Read

Structural modelling of the lumenal domain of human GPAA1, the metallo-peptide synthetase subunit of the transamidase complex, reveals zinc-binding mode and two flaps surrounding the active site

The transamidase complex is a molecular machine in the endoplasmic reticulum of eukaryotes that attaches a glycosylphosphatidylinositol (GPI) lipid anchor to substrate proteins after cleaving a C-terminal propeptide with a defined sequence signal. Its five subunits are very hydrophobic; thus, solubility, heterologous expression and complex reconstruction are difficult.

Read

Identification and engineering of 32 membered antifungal macrolactone notonesomycins

Notonesomycin A is a 32-membered bioactive glycosylated macrolactone known to be produced by Streptomyces aminophilus subsp. notonesogenes 647-AV1 and S. aminophilus DSM 40186. In a high throughput antifungal screening campaign, we identified an alternative notonesomycin A producing strain, Streptomyces sp. A793, and its biosynthetic gene cluster.

Read

Hypocrisy Around Medical Patient Data: Issues of Access for Biomedical Research, Data Quality, Usefulness for the Purpose and Omics Data as Game Changer

Whether due to simplicity or hypocrisy, the question of access to patient data for biomedical research is widely seen in the public discourse only from the angle of patient privacy. At the same time, the desire to live and to live without disability is of much higher value to the patients. This goal can only be achieved by extracting research insight from patient data in addition to working on model organisms, something that is well understood by many patients.

Read