Goh CJH

Metabolism of glucose activates TORC1 through multiple mechanisms in Saccharomyces cerevisiae

Alfatah et al. interrogate the relationship between glucose metabolism and TORC1 activation in Saccharomyces cerevisiae. They identify three distinct pathways for glucose-induced TORC1 activation, with each pathway requiring a different extent of glucose metabolism via the glycolytic pathway.

Read

Fungus-derived protein particles as cell-adhesive matrices for cell-cultivated food

Cell-adhesive factors mediate adhesion of cells to substrates via peptide motifs such as the Arg–Gly–Asp (RGD) sequence. With the onset of sustainability issues, there is a pressing need to find alternatives to animal-derived cell-adhesive factors, especially for cell-cultivated food applications.

Read

Diethyl phthalate (DEP) perturbs nitrogen metabolism in Saccharomyces cerevisiae

Phthalate esters (PAE) are compounds derived by double esterification of phthalic acid (1,2-benzenedicarboxylic acid). Since the Industrial Revolution, low molecular weight phthalates such as dimethyl phthalate (DMP) and diethyl phthalate (DEP) have been used in pharmaceutical and manufacturing industries to confer flexibility to products used in personal care, infant care and medical devices1.

Read

Zyxin Is Involved in Fibroblast Rigidity Sensing and Durotaxis

Focal adhesions (FAs) play an important role in sensing mechanical cues in the extracellular matrix and transducing forces from the extracellular matrix into biological signals (Riveline et al., 2001). The cells can sense and respond to changes in the rigidity of the underlying substrates. When cells are grown on substrates of varying rigidity, they exert larger traction stress and migrate towards more rigid substrates in a phenomenon known as durotaxis (Lo et al., 2000). In order to sense substrate rigidity, the cells apply traction stress through FAs and actin stress fibres to measure mechanical responses of the substrate (Discher et al., 2005; Kobayashi and Sokabe, 2010; Prager-Khoutorsky et al., 2011). While the FA structure of mouse fibroblasts has been elucidated at the nanoscale level (Kanchanawong et al., 2010), little is known about the substrate rigidity sensing mechanisms of the cell.

Read

TORC1 regulates the transcriptional response to glucose and developmental cycle via the Tap42-Sit4-Rrd1/2 pathway in Saccharomyces cerevisiae

Target of Rapamycin Complex 1 (TORC1) is a highly conserved eukaryotic protein complex that couples the presence of growth factors and nutrients in the environment with cellular proliferation. TORC1 is primarily implicated in linking amino acid levels with cellular growth in yeast and mammals.

Read

Identification of pathways modulating vemurafenib resistance in melanoma cells via a genome-wide CRISPR/Cas9 screen

Vemurafenib is a BRAF kinase inhibitor (BRAFi) that is used to treat melanoma patients harboring the constitutively active BRAF-V600E mutation. However, after a few months of treatment patients often develop resistance to vemurafenib leading to disease progression.

Read