Kuznetsov VA

Immunity Depletion, Telomere Imbalance, and Cancer-Associated Metabolism Pathway Aberrations in Intestinal Mucosa upon Short-Term Caloric Restriction

Dietary restriction regimens, such as caloric restriction (CR), in the initiation and development of cancers has been studied using biological models and traditionally considers CR as anti-cancerogenic. However, the experimental, clinical facts and conclusions are controversial. CR-induced molecular and cellular mechanisms and pro-oncogenic pathways have not been systematically studied, leaving therapeutic benefits unclear. Here, using systems biology and deep data analysis approach, we study the CR-induced molecular pathway switches and cell-type context-specific responses known to underly early pre-malignant states in mouse and human mucosa. We identify the genes and energy-restricted networks associated with pre-malignant state metabolic reprogramming in normal stem cells and epithelial cell cycle activation, leading to telomere ends misbalance and immune response depletion. We define the changes in tumor suppressor and oncogenic pathways which may precede intestinal mucosa lesion development. This work will aid in the near future to define critical biomarkers for earlier detection and risk of adenomas and colorectal cancer.

Read

Replication Stress Induces Global Chromosome Breakage in the Fragile X Genome

Keywords: DNA double-strand breaks; DNA replication stress; DSB; FMRP; FXS; I304N; R-loops; chromosome fragile sites; fragile X syndrome; genome instability.

Read

Towards Predictive R-loop Computational Biology: Genome-Scale Prediction of R-loops Reveals Their association with Complex Promoter Structures, G-Quadruplexes and Transcriptionally Active Enhancers

R-loops are three-stranded RNA:DNA hybrid structures essential for many normal and pathobiological processes. Previously, we generated a quantitative R-loop forming sequence (RLFS) model, quantitative model of R-loop-forming sequences (QmRLFS) and predicted ∼660 000 RLFSs; most of them located in genes and gene-flanking regions, G-rich regions and disease-associated genomic loci in the human genome.

Read

Plasma Ceramides as Prognostic Biomarkers and Their Arterial and Myocardial Tissue Correlates in Acute Myocardial Infarction

We identified a plasma signature of 11 C14 to C26 ceramides and 1 C16 dihydroceramide predictive of major adverse cardiovascular events in patients with acute myocardial infarction (AMI).

Read

Gene expression profile analysis of aortic vascular smooth muscle cells reveals upregulation of cadherin genes in myocardial infarction patients

Myocardial infarction (MI) induced by acute coronary arterial occlusion is usually secondary to atherosclerotic plaque rupture. Dysregulated response of vascular smooth muscle cells (VSMCs) in atherosclerotic plaques may promote plaque rupture. Cadherins (CDHs) form adherens junctions and are known stabilizers of atherosclerotic plaques. To date, the expression patterns of cadherin have not been well investigated in MI aortic VSMCs.

Read

"Transcriptome alterations of vascular smooth muscle cells in aortic wall of myocardial infarction patients"

This article contains further data and information from our published manuscript [1]. We aim to identify significant transcriptome alterations of vascular smooth muscle cells (VSMCs) in the aortic wall of myocardial infarction (MI) patients. Microarray gene analysis was applied to evaluate VSMCs of MI and non-MI patients. Prediction Analysis of Microarray (PAM) identified genes that significantly discriminated the two groups of samples. Incorporation of gene ontology (GO) identified a VSMCs-associated classifier that discriminated between the two groups of samples. Mass spectrometry-based iTRAQ analysis revealed proteins significantly differentiating these two groups of samples. Ingenuity Pathway Analysis (IPA) revealed top pathways associated with hypoxia signaling in cardiovascular system. Enrichment analysis of these proteins suggested an activated pathway, and an integrated transcriptome-proteome pathway analysis revealed that it is the most implicated pathway. The intersection of the top candidate molecules from the transcriptome and proteome highlighted overexpression.

Read

Distinctive molecular signature and activated signaling pathways in aortic smooth muscle cells of patients with myocardial infarction

Background and aims: We aim to identify significant transcriptome alterations of vascular smooth muscle cells (VSMCs) in the aortic wall of myocardial infarction (MI) patients. Providing a robust transcriptomic signature, we aim to highlight the most likely aberrant pathway(s) in MI VSMCs.

Read