Shivgan AT

Uncovering cryptic pockets in the SARS-CoV-2 spike glycoprotein

The COVID-19 pandemic has prompted a rapid response in vaccine and drug development. Herein, we modeled a complete membrane-embedded SARS-CoV-2 spike glycoprotein and used molecular dynamics simulations with benzene probes designed to enhance discovery of cryptic pockets.

Read

Site-Specific Steric Control of SARS-CoV-2 Spike Glycosylation

A central tenet in the design of vaccines is the display of native-like antigens in the elicitation of protective immunity. The abundance of N-linked glycans across the SARS-CoV-2 spike protein is a potential source of heterogeneity among the many different vaccine candidates under investigation.

Read

Extending the Martini coarse-grained forcefield to N-glycans

Glycans play a vital role in a large number of cellular processes. Their complex and flexible nature hampers structure-function studies using experimental techniques. Molecular dynamics (MD) simulations can help in understanding dynamic aspects of glycans if the forcefield (FF) parameters used can reproduce key experimentally observed properties.

Read