Yu W

Predicting recurrence in osteosarcoma via a quantitative histological image classifier derived from tumour nuclear morphological features

Recurrence is the key factor affecting the prognosis of osteosarcoma. Currently, there is a lack of clinically useful tools to predict osteosarcoma recurrence. The application of pathological images for artificial intelligence-assisted accurate prediction of tumour outcomes is increasing.

Read

Tissue fluidification promotes a cGAS–STING cytosolic DNA response in invasive breast cancer

The process in which locally confined epithelial malignancies progressively evolve into invasive cancers is often promoted by unjamming, a phase transition from a solid-like to a liquid-like state, which occurs in various tissues.

Read

Quantitative image-based collagen structural features predict the reversibility of hepatitis C virus-induced liver fibrosis post antiviral therapies

The novel targeted therapeutics for hepatitis C virus (HCV) in last decade solved most of the clinical needs for this disease. However, despite antiviral therapies resulting in sustained virologic response (SVR), a challenge remains where the stage of liver fibrosis in some patients remains unchanged or even worsens, with a higher risk of cirrhosis, known as the irreversible group.

Read

An AI-assisted tool for efficient prostate cancer diagnosis in low-grade and low-volume cases

Pathologists diagnose prostate cancer by core needle biopsy. In low-grade and low-volume cases, they look for a few malignant glands out of hundreds within a core. They may miss a few malignant glands, resulting in repeat biopsies or missed therapeutic opportunities. This study developed a multi-resolution deep-learning pipeline to assist pathologists in detecting malignant glands in core needle biopsies of low-grade and low-volume cases. Analyzing a gland at multiple resolutions, our model exploited morphology and neighborhood information, which were crucial in prostate gland classification. We developed and tested our pipeline on the slides of a local cohort of 99 patients in Singapore. Besides, we made the images publicly available, becoming the first digital histopathology dataset of patients of Asian ancestry with prostatic carcinoma. Our multi-resolution classification model achieved an area under the receiver operating characteristic curve (AUROC) value of 0.992 (95% confidence interval [CI]: 0.985–0.997) in the external validation study, showing the generalizability of our multi-resolution approach.

Read

A bio-functional polymer that prevents retinal scarring through modulation of NRF2 signalling pathway

Aberrant wound healing, which leads to irreversible fibrosis, underpins many pathological diseases. In the eye, this manifests as proliferative vitreoretinopathy (PVR), a major cause of poor vision due to failed retinal detachment (RD) surgery1,2. PVR occurs due to proliferative and contractile fibrocellular scar membranes that form either in the vitreous or surrounding the retina.

Read

Transitional premonocytes emerge in the periphery for host defense against bacterial infections

Circulating Ly6Chi monocytes often undergo cellular death upon exhaustion of their antibacterial effector functions, which limits their capacity for subsequent macrophage differentiation. This shrouds the understanding on how the host replaces the tissue-resident macrophage niche effectively during bacterial invasion to avert infection morbidity.

Read

Hybrid AI assistive diagnostic model permits rapid TBS classification of cervical liquid-based thin-layer cell smears

Technical advancements significantly improve earlier diagnosis of cervical cancer, but accurate diagnosis is still difficult due to various factors. We develop an artificial intelligence assistive diagnostic solution, AIATBS, to improve cervical liquid-based thin-layer cell smear diagnosis according to clinical TBS criteria.

Read

Regional registration of whole slide image stacks containing major histological artifacts

Background High resolution 2D whole slide imaging provides rich information about the tissue structure. This information can be a lot richer if these 2D images can be stacked into a 3D tissue volume. A 3D analysis, however, requires accurate reconstruction of the tissue volume from the 2D image stack. This task is not trivial due to the distortions such as tissue tearing, folding and missing at each slide. Performing registration for the whole tissue slices may be adversely affected by distorted tissue regions. Consequently, regional registration is found to be more effective. In this paper, we propose a new approach to an accurate and robust registration of regions of interest for whole slide images. We introduce the idea of multi-scale attention for registration.

Read