Zhang C

Molecular basis for lipid recognition by the prostaglandin D2 receptor CRTH2

Prostaglandin D2 (PGD2) signals through the G protein-coupled receptor (GPCR) CRTH2 to mediate various inflammatory responses. CRTH2 is the only member of the prostanoid receptor family that is phylogenetically distant from others, implying a nonconserved mechanism of lipid action on CRTH2.

Read

Bioinformatics-aided identification, characterization and applications of mushroom linalool synthases

Enzymes empower chemical industries and are the keystone for metabolic engineering. For example, linalool synthases are indispensable for the biosynthesis of linalool, an important fragrance used in 60–80% cosmetic and personal care products.

Read

Submolecular probing of the complement C5a receptor–ligand binding reveals a cooperative two-site binding mechanism

A current challenge to produce effective therapeutics is to accurately determine the location of the ligand-biding site and to characterize its properties. So far, the mechanisms underlying the functional activation of cell surface receptors by ligands with a complex binding mechanism remain poorly understood due to a lack of suitable nanoscopic methods to study them in their native environment.

Read

Structure of human steroid 5α-reductase 2 with the anti-androgen drug finasteride

Human steroid 5α-reductase 2 (SRD5A2) is an integral membrane enzyme in steroid metabolism and catalyzes the reduction of testosterone to dihydrotestosterone. Mutations in the SRD5A2 gene have been linked to 5α-reductase deficiency and prostate cancer. Finasteride and dutasteride, as SRD5A2 inhibitors, are widely used antiandrogen drugs for benign prostate hyperplasia.

Read

Structure of formylpeptide receptor 2-Gi complex reveals insights into ligand recognition and signaling

Formylpeptide receptors (FPRs) as G protein-coupled receptors (GPCRs) can recognize formylpeptides derived from pathogens or host cells to function in host defense and cell clearance. In addition, FPRs, especially FPR2, can also recognize other ligands with a large chemical diversity generated at different stages of inflammation to either promote or resolve inflammation in order to maintain a balanced inflammatory response.

Read

G Protein-Coupled Receptors in Asthma Therapy: Pharmacology and Drug Action

Asthma is a heterogeneous inflammatory disease of the airways that is associated with airway hyperresponsiveness and airflow limitation. Although asthma was once simply categorized as atopic or nonatopic, emerging analyses over the last few decades have revealed a variety of asthma endotypes that are attributed to numerous pathophysiological mechanisms.

Read

Structures of the Human PGD2 Receptor CRTH2 Reveal Novel Mechanisms for Ligand Recognition

The signaling of prostaglandin D 2 (PGD 2) through G-protein-coupled receptor (GPCR) CRTH2 is a major pathway in type 2 inflammation. Compelling evidence suggests the therapeutic benefits of blocking CRTH2 signaling in many inflammatory disorders. Currently, a number of CRTH2 antagonists are under clinical investigation, and one compound, fevipiprant, has advanced to phase 3 clinical trials for asthma.

Read

Orthosteric and allosteric action of the C5a receptor antagonists

The C5a receptor (C5aR) is a G-protein-coupled receptor (GPCR) that can induce strong inflammatory response to the anaphylatoxin C5a. Targeting C5aR has emerged as a novel anti-inflammatory therapeutic method. However, developing potent C5aR antagonists as drugs has proven difficult.

Read