Back

Biophysical studies and modelling indicate the binding preference of TAZ WW domain for LATS1 PPxY motif

Journal Type:  Journal Paper
Journal:  Biochemical and Biophysical Research Communications, Vol. 502, Issue 3, 20 Jul 2018, Pg 307-312, doi: 10.1016/j.bbrc.2018.05.127
Pubmed:  29787761
Impact Factor:  2.559
Date of Acceptance:   2 Jul 2020

The Hippo tumor suppressor pathway is an important regulator ofcell proliferationand apoptosis, andsignal transductionoccurs through phosphorylation of the effector protein TAZ by the serine/threonine kinase LATS1/2. Here, we report the biophysical and computational studies to characterize the interaction between TAZ and LATS1/2 through WW domain-PPxY motif binding. We show that the TAZ WW domain exhibits a binding preference for the second of the two PPxY motifs of LATS1in vitro. We modelled the structure of the domain in complex with LATS1 PPxY2 peptide and, through molecular dynamics simulations, show that WW domain-PPxY2 complex is stable with some flexibility in the peptide region. Next, we predict and verify that L143 and T150 of the WW domain are important for TAZ binding with the PPxY2 peptide using mutational and isothermal titration calorimetric studies. Furthermore, we suggest that the electrostatic potential of charged residues within the binding pocket may influence the ligand affinity among otherwise highly similar WW domains.