Huber RG

Multiscale modeling of innate immune receptors: Endotoxin recognition and regulation by host defense peptides

The innate immune system provides a first line of defense against foreign microorganisms, and is typified by the Toll-like receptor (TLR) family. TLR4 is of particular interest, since over-stimulation of its pathway by excess lipopolysaccharide (LPS) molecules from the outer membranes of Gram-negative bacteria can result in sepsis, which causes millions of deaths each year. In this review, we outline our use of molecular simulation approaches to gain a better understanding of the determinants of LPS recognition, towards the search for novel immunotherapeutics.

Read

Multiscale Modeling and Simulation Approaches to Lipid-Protein Interactions

Lipid membranes play a crucial role in living systems by compartmentalizing biological processes and forming a barrier between these processes and the environment. Naturally, a large apparatus of biomolecules is responsible for construction, maintenance, transport, and degradation of these lipid barriers.

Read

Structure and subunit arrangement of Mycobacterial F1FO ATP synthase and novel features of the unique mycobacterial subunit δ

In contrast to other prokaryotes, the Mycobacterial F1FO ATP synthase (α3:β3:γ:δ:ε:a:b:b':c9) is essential for growth. The mycobacterial enzyme is also unique as a result of its 111 amino acids extended δ subunit, whose gene is fused to the peripheral stalk subunit b. Recently, the crystallographic structures of the mycobacterial α3:β3:γ:ε-domain and c subunit ring were resolved. Here, we report the first purification protocol of the intact M.

Read

Structure mapping of dengue and Zika viruses reveals functional long-range interactions

Dengue (DENV) and Zika (ZIKV) viruses are clinically important members of the Flaviviridae family with an 11 kb positive strand RNA genome that folds to enable virus function. Here, we perform structure and interaction mapping on four DENV and ZIKV strains inside virions and in infected cells. Comparative analysis of SHAPE reactivities across serotypes nominates potentially functional regions that are highly structured, conserved, and contain low synonymous mutation rates.

Read

Directing GDNF-mediated neuronal signaling with proactively programmable cell-surface saccharide-free glycosaminoglycan mimetics

A significant barrier to harnessing the power of cell-surface glycosaminoglycans (GAGs) to modulate glial cell-line-derived neurotrophic factor (GDNF) signaling is the difficulty in accessing key GAG structures involved. Here, we report tailored GDNF signaling using synthetic polyproline-based GAG mimetics (PGMs).

Read

Energetic Fingerprinting of Ligand Binding to Paralogous Proteins: The Case of the Apoptotic Pathway

Networks of biological molecules are key to cellular function, governing processes ranging from signal cascade propagation to metabolic pathway regulation. Genetic duplication processes give rise to sets of regulatory proteins that have evolved from a common ancestor, leading to interactomes whose dysregulation is often associated with disease. A better understanding of the determinants of specificity at 21 interfaces shared by functionally related proteins is crucial to the rational design of novel pharmacotherapeutic agents.

Read

Engineering an Osmosensor by Pivotal Histidine Positioning within Disordered Helices

Histidine kinases (HKs) funnel diverse environmental stimuli into a single autophosphorylation event at a conserved histidine residue. The HK EnvZ is a global sensor of osmolality and cellular acid pH. In previous studies, we discovered that osmosensing in EnvZ was mediated through osmolyte-induced stabilization of the partially disordered helical backbone spanning the conserved histidine autophosphorylation site (His243).

Read

Facile saccharide-free mimetics that recapitulate key features of glycosaminoglycan sulfation patterns

Controlling glycosaminoglycan (GAG) activity to exploit its immense potential in biology ultimately requires facile manipulation of sulfation patterns associated with GAGs. However, satisfying this requirement in full remains challenging, given that synthesis of GAGs is technically arduous while convenient GAG mimetics often produce sulfation patterns that are uncharacteristic of GAGs.

Read