Imaging Informatics Division

Regulation of flagellar motor switching by c-di-GMP phosphodiesterases in Pseudomonas aeruginosa

The second messenger cyclic diguanylate (c-di-GMP) plays a prominent role in regulating flagellum-dependent motility in the single-flagellated pathogenic bacterium Pseudomonas aeruginosa. The c-di-GMP–mediated signaling pathways and mechanisms that control flagellar output remain to be fully unveiled. Studying surface-tethered and free-swimming P. aeruginosa PAO1 cells, we found that the overexpression of an exogenous diguanylate cyclase (DGC) raises the global cellular c-di-GMP concentration and thereby inhibits flagellar motor switching and decreases motor speed, reducing swimming speed and reversal frequency, respectively.

Read

Enrichment and Identification of Neural Stem Cells in Neurospheres Using Rigidity-Tunable Gels

Neural stem cells (NCSs) are integral to establishing in vitro models and regenerative medicine. To this day, there is an unmet need to enrich these cells from a heterogeneous cell population for clinical applications without irreversible manipulation. We identified a method to propagate human NCSs via computational analysis of their mechanical signature.

Read

Superresolution microscopy reveals distinct localisation of full length IRSp53 and its I-BAR domain protein within filopodia

Superresolution microscopy offers the advantage of imaging biological structures within cells at the nano-scale. Here we apply two superresolution microscopy techniques, specifically 3D structured illumination microscopy (3D-SIM) and direct stochastic optical reconstruction microscopy (dSTORM), a type of single molecule localisation microscopy, to localise IRSp53 protein and its I-BAR domain in relation to F-actin within filopodia.

Read

Anisotropic traction stresses and focal adhesion polarization mediates topography-induced cell elongation

Cell elongation and differentiation has been shown to be modulated by topographical cues provided by grating substratum. However, little is known about the mechanisms and forces involved in the grating-induced cell elongation, due to the difficulty in fabricating soft elastic gels that allow 3-dimensional (3D) cell traction stress measurements.

Read

Emerging technologies for food and drug safety

Emerging technologies are playing a major role in the generation of new approaches to assess the safety of both foods and drugs. However, the integration of emerging technologies in the regulatory decision-making process requires rigorous assessment and consensus amongst international partners and research communities. To that end, the Global Coalition for Regulatory Science Research (GCRSR) in partnership with the Brazilian Health Surveillance Agency (ANVISA) hosted the seventh Global Summit on Regulatory Science (GSRS17) in Brasilia, Brazil on September 18-20, 2017 to discuss the role of new approaches in regulatory science with a specific emphasis on applications in food and medical product safety.

Read

Synthesizing retinal and neuronal images with generative adversarial nets

This paper aims at synthesizing multiple realistic-looking retinal (or neuronal) images from an unseen tubular structured annotation that contains the binary vessel (or neuronal) morphology. The generated phantoms are expected to preserve the same tubular structure, and resemble the visual appearance of the training images.

Read

Enhanced Delta-Notch Lateral Inhibition Model Incorporating Intracellular Notch Heterogeneity and Tension-Dependent Rate of Delta-Notch Binding that Reproduces Sprouting Angiogenesis Patterns

Endothelial cells adopt unique cell fates during sprouting angiogenesis, differentiating into tip or stalk cells. The fate selection process is directed by Delta-Notch lateral inhibition pathway. Classical Delta-Notch models produce a spatial pattern of tip cells separated by a single stalk cell, or the salt-and-pepper pattern. However, classical models cannot explain alternative tip-stalk patterning, such as tip cells that are separated by two or more stalk cells.

Read

Three-dimensional computational model of multiphase flow driven by a bed of active cilia

Micro-scale physiological fluid propulsion is often accomplished with arrays of beating cilia. It is well-known that cilia can spontaneously coordinate their beat patterns to form metachronal waves. While it is generally agreed upon that metachronal waves arise largely due to hydrodynamic coupling, their effects on fluid propulsion are not thoroughly explored. There are presently complex, nonlinear models where cilia motion mimics their internal mechanisms; however these models are often computationally challenging and expensive to perform.

Read