Imaging Informatics Division

Building predictive in vitro pulmonary toxicity assays using high-throughput imaging and artificial intelligence

Human lungs are susceptible to the toxicity induced by soluble xenobiotics. However, the direct cellular effects of many pulmonotoxic chemicals are not always clear, and thus, a general in vitro assay for testing pulmonotoxicity applicable to a wide variety of chemicals is not currently available.

Read

Human mesenchymal stem cell basal membrane bending on gratings is dependent on both grating width and curvature

The topography of the extracellular substrate provides physical cues to elicit specific downstream biophysical and biochemical effects in cells. An example of such a topographical substrate is periodic gratings, where the dimensions of the periodic gratings influence cell morphology and directs cell differentiation.

Read

Cell-Cell Adhesion and Cortical Actin Bending Govern Cell Elongation on Negatively Curved Substrates

Physiologically, cells experience and respond to a variety of mechanical stimuli such as rigidity and topography of the extracellular matrix. However, little is known about the effects of substrate curvature on cell behavior. We developed a novel, to our knowledge, method to fabricate cell culture substrates with semicylindrical grooves of negative curvatures (radius of curvature, Rc = 20-100 μm). We found that negative substrate curvatures induced elongation of mesenchymal and epithelial cells along the cylinder axis.

Read

A computational model for how cells choose temporal or spatial sensing during chemotaxis

Cell size is thought to play an important role in choosing between temporal and spatial sensing in chemotaxis. Large cells are thought to use spatial sensing due to large chemical difference at its ends whereas small cells are incapable of spatial sensing due to rapid homogenization of proteins within the cell. However, small cells have been found to polarize and large cells like sperm cells undergo temporal sensing. Thus, it remains an open question what exactly governs spatial versus temporal sensing.

Read

Structural analyses unravel the molecular mechanism of cyclic di-GMP regulation of bacterial chemotaxis via a PilZ adaptor protein

The bacterial second messenger cyclic di-GMP (c-di-GMP) has emerged as a prominent mediator of bacterial physiology, motility, and pathogenicity. c-di-GMP often regulates the function of its protein targets through a unique mechanism that involves a discrete PilZ adaptor protein.

Read

Multivariate Regression with Gross Errors on Manifold-valued Data

We consider the topic of multivariate regression on manifold-valued output, that is, for a multivariate observation, its output response lies on a manifold. Moreover, we propose a new regression model to deal with the presence of grossly corrupted manifold-valued responses, a bottleneck issue commonly encountered in practical scenarios.

Read

Covariant Conservation Laws and the Spin Hall Effect in Dirac-Rashba Systems.

We present a theoretical analysis of two-dimensional Dirac-Rashba systems in the presence of disorder and external perturbations. We unveil a set of exact symmetry relations (Ward identities) that impose strong constraints on the spin dynamics of Dirac fermions subject to proximity-induced interactions.

Read

Tumor-adjacent tissue co-expression profile analysis reveals pro-oncogenic ribosomal gene signature for prognosis of resectable hepatocellular carcinoma

Currently, molecular markers are not used when determining the prognosis and treatment strategy for patients with hepatocellular carcinoma (HCC). In the present study, we proposed that the identification of common pro‐oncogenic pathways in primary tumors (PT) and adjacent non‐malignant tissues (AT) typically used to predict HCC patient risks may result in HCC biomarker discovery.

Read